Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electron Source Configuration Axel Brachmann - SLAC - Jan. 19 2006, KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.

Similar presentations


Presentation on theme: "Electron Source Configuration Axel Brachmann - SLAC - Jan. 19 2006, KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center."— Presentation transcript:

1 Electron Source Configuration Axel Brachmann - SLAC - Jan. 19 2006, KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center

2 Layout as defined in the Baseline Configuration Document Positron-style room- temperature accelerating section diagnostics section standard ILC SCRF modules sub-harmonic bunchers + solenoids laser E=70-100 MeV Additional Responsibilities:  Injector  Damping ring transfer  SPIN control (LINAC longitudonal  DR vertical) International Linear Collider at Stanford Linear Accelerator Center

3 Overview  Laser System and (laser) optical transfer  see Snowmass ’05  Polarized Gun  Bunching Section  NC pre-accelerator  SC e- Injector LINAC  Basic component count  Length estimates References: - TESLA TDR - A. Curtoni, M. Jablonka; Study of the TESLA preaccelerator for the polarized beam, TESLA-2001-20 International Linear Collider at Stanford Linear Accelerator Center

4 BPM Load-lock chamber connects here Ion Pump RGA High voltage insulator e - beam laser beam Magnetic lens 120 kV DC Gun – Baseline Design is SLC Gun Approximate location of cathode Leak valve Load-lock and cesiator on other side International Linear Collider at Stanford Linear Accelerator Center

5 Loadlock System for Cathode Preparation and Installation International Linear Collider at Stanford Linear Accelerator Center

6 ILC DC Gun Design  SLC gun is baseline 120 kV, 1.7 MV/m at Cathode Possible higher gradient, eg. at Cornell, Jefferson Lab, Nagoya New electrode materials, cesiation schemes  Polarized RF gun R&D International Linear Collider at Stanford Linear Accelerator Center

7 Bunching Section  SHB Normal conducting sub-harmonic bunching section Focusing by solenoidal field Scaling from TTF results in following parameters : Distance between sub-harmonic buncher cavities: 200 cm Bunch compression: 97 o rms at entrance to second SHB cavity, and 30 o rms at buncher entrance Distance to buncher: 38 cm  Buncher 2 cavities (5 cell) separated by λ/2 (115.3 mm);  =1 Structure 14.8 MV/m (simulations with 12 MV/m) 12 MeV beam energy after bunching Cavity #F [MHz]Voltage [kV] Rs [M  ] Q0Q0 P [W] 1108 (1/12)408.83.4*10 4 220 2433 (1/3)444.41.7*10 4 360 International Linear Collider at Stanford Linear Accelerator Center

8 NC Pre-Accelerator Energy from 12 MeV  ~ 70 - 100 MeV Positron style room temperature accelerating section 17 cell cavities, one pair  31 MeV energy gain using 10 MW klystron Number of pairs must be selected –2 pairs  ~ 76 MeV, 0.28 mm.mrad (un. Emitt.) –3 pairs  ~ 100 MeV, 0.2 mm.mrad (un. Emitt.) 1 triplet between pairs 2 triplets to match to SC LINAC module Spectrometer arm for independent tuning International Linear Collider at Stanford Linear Accelerator Center

9 500 MeV SC LINAC and 5 GeV e - Injector LINAC  STEP 1 Add ~ 424 MeV Two standard SC LINAC modules of 12 cavities each Gradient: E acc = 17.8 MV/m Lower energy requires doublets instead of triplets  STEP 2 Energy gain to 5 GeV by 18 standard cryomodules Gradient: E acc = 20 MV/m International Linear Collider at Stanford Linear Accelerator Center

10 Instrumentation  Special diagnostics: Gun diagnostics Vacuum Dark current QE diagnostics  Integrated into gun design Faraday cup Mott polarimeter  BPM’s, Toroids, Wirescanners/Laserwires, Profile Monitors  Bunch length measurements (Marc Ross proposals): Band pass mirco wave detectors Beam phasing Energy / time correclations  Common instrumentation requirements with e + International Linear Collider at Stanford Linear Accelerator Center

11 Layout and Length Estimates ComponentDistance [m] Pre-Gun Systems (Laser, OTR, Local Injector Controls) ~ 50 Guns and Load-Lock Installation~ 5 Y extension lines (with diagnostics and solenoidal field)~ 3 SHB 1 (solenoidal field)~ 3 SHB 2 (solenoidal field)~ 3 Buncher~ 2.5 Pre-accelerator (to 500 MeV, 17.8 MV/m)~ 30 RT – SC beamline~ 12 Injector Linac (to 5 GeV; 18 17 m SC modules 20 MV/m)~ 306 e - injector to DR transfer line with SPIN rotator~25 Total Length of Injector Area439 International Linear Collider at Stanford Linear Accelerator Center

12 Components (e - and e + source) ComponentsCount Laser systems2 Guns2 ‘Y’ bend magnet1 Solenoidal focusing magnets9 m DipolsDiagnostic arm1 DR transfer1 DoubletsInjection LINAC2 TripletsBetween NC pre-accelerator sections1 Between NC and SC2 Total3 Klystrons (10MW)Buncher1 Pre-accelerator1 Injection LINAC6 Total8 CryomodulesPre-accelerator2 Injection LINAC17 Total19 SPIN RotatorDR In/out2 International Linear Collider at Stanford Linear Accelerator Center


Download ppt "Electron Source Configuration Axel Brachmann - SLAC - Jan. 19 2006, KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center."

Similar presentations


Ads by Google