ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
Standalone VeloPix Simulation Jianchun Wang 4/30/10.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
PHENIX Vertex Tracker Atsushi Taketani for PHENIX collaboration RIKEN Nishina Center RIKEN Brookhaven Research Center 1.Over view of Vertex detector 2.Physics.
ATLAS SCT module performance: beam test results José E. García.
A new idea of the vertex detector for ILC Y. Sugimoto Nov
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
R&D Status of FPCCD Vertex Detector Dec.1, 2006 Yasuhiro Sugimoto KEK.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Tobias Haas DESY 7 November 2006 A Pixel Telescope for Detector R&D for an ILC Introduction: EUDET Introduction: EUDET Pixel Telescope Pixel Telescope.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
Fine Pixel CCD Option for the ILC Vertex Detector
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
1 Realistic top Quark Reconstruction for Vertex Detector Optimisation Talini Pinto Jayawardena (RAL) Kristian Harder (RAL) LCFI Collaboration Meeting 23/09/08.
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
Vienna Fast Simulation LDT Munich, Germany, 17 March 2008 M. Regler, M. Valentan Demonstration and optimization studies by the Vienna Fast Simulation Tool.
LHCb VErtex LOcator & Displaced Vertex Trigger
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
CLICdp achievements in 2014 and goals for 2015 Lucie Linssen, CERN on behalf of the CLICdp collaboration CLIC workshop, January 30 th
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
Jyly 8, 2009, 3rd open meeting of Belle II collaboration, KEK1 Charles University Prague Zdeněk Doležal for the DEPFET beam test group 3rd Open Meeting.
1 FPCCD VTX Work Plan Y. Sugimoto 2010/1/22. 2 FPCCD: Features and R&D issues (1/2) Small pixel size (~5  m) –Sensor development Small size chip; ~6mm.
1 Nick Sinev, ALCPG March 2011, Eugene, Oregon Investigation into Vertex Detector Resolution N. B. Sinev University of Oregon, Eugene.
The DAMPE STK G. Ambrosi INFN Perugia. The DAMPE Detector Mass: 1480 Kg Power: 600 W Data: 16 Gbyte/day Liftime: 5 years 2.
T. Lari – INFN Milan Status of ATLAS Pixel Test beam simulation Status of the validation studies with test-beam data of the Geant4 simulation and Pixel.
Tracking in a TPC D. Karlen / U. Victoria & TRIUMF for the LCTPC collaboration.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
8/12/2010Dominik Dannheim, Lucie Linssen1 Conceptual layout drawings of the CLIC vertex detector and First engineering studies of a pixel access/insertion.
FPCCD VTX Work Plan Y. Sugimoto 2010/1/22. FPCCD: Features and R&D issues (1/2) Small pixel size (~5  m) –Sensor development Small size; ~6mm x 6mm Full.
TRACKING AND VERTEXING SUMMARY Suyong Choi Korea University.
SiD Tracking in the LOI and Future Plans Richard Partridge SLAC ALCPG 2009.
3 May 2003, LHC2003 Symposium, FermiLab Tracking Performance in LHCb, Jeroen van Tilburg 1 Tracking performance in LHCb Tracking Performance Jeroen van.
6/19/06 Su DongSiD Advisory: VXD DOD Summary II1 VXD DOD Summary (II) Sensors & Other system Issues.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
Hybrid Boards for PXD6 5th International Workshop on DEPFET Detectors and Applications Sept Oct Christian Koffmane 1,2 1 Max-Planck-Institut.
The BTeV Pixel Detector and Trigger System Simon Kwan Fermilab P.O. Box 500, Batavia, IL 60510, USA BEACH2002, June 29, 2002 Vancouver, Canada.
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
CMOS Pixels Sensor Simulation Preliminary Results and Plans M. Battaglia UC Berkeley and LBNL Thanks to A. Raspereza, D. Contarato, F. Gaede, A. Besson,
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
FP-CCD GLD VERTEX GROUP Presenting by Tadashi Nagamine Tohoku University ILC VTX Ringberg Castle, May 2006.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
H.-G. Moser Max-Planck-Institut fuer Physik DEPFET Meeting Heidelberg Sept DEPFET Geometry for SuperBelle Sensor Geometry Pixel Pitch Constant/variable.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
 Silicon Vertex Detector Upgrade for the Belle II Experiment
CMOS pixel sensors & PLUME operation principles
Huagen Xu IKP: T. Randriamalala, J. Ritman and T. Stockmanns
The CBM sensor digitizer
DEPFET Active Pixel Sensors (for the ILC)
Panagiotis Kokkas Univ. of Ioannina
Integration and alignment of ATLAS SCT
The SuperB Silicon Vertex Tracker
DEPFET Vertex Detector Simulation
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
FPCCD Vertex Detector for ILC
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
FPCCD Vertex Detector for ILC
Enhanced Lateral Drift (ELAD) sensors
Presentation transcript:

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET Collaboration (

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik We need: Realistic description of geometry including support material Realistic simulation of the sensor response Validation of the simulation with data from beam tests Evaluation of the physics performance DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Simulation of the DEPFET VXD geometry Realistic description of module design including electronics and support structure Model in GEANT 4 Ladder VXD “outside” support structures simplified and preliminary

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Sensor response Digitization is implemented taking into account Landau fluctuations of specific energy loss along track path charge transport and sharing between neighboring pixels; diffusion Lorentz shift in magnetic field electronic noise effects

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Validation with Test Beam Data Comparison with data from DESY 2005 testbeam, 6 GeV electrons Thickness 450 μm, pixel size 36 x 22 μm no B field, noise set to 300 e - Track incident angles from 0 to 40 degrees Data MC Cluster Size

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Validation with Test Beam Data Comparison with data from DESY 2005 testbeam, 6 GeV electrons Thickness 450 μm, pixel size 36x22 μm no B field, noise set to 300 e - Track incident angles from 0 to 40 degrees Data MC Cluster Signal

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Comparison with data from DESY 2005 testbeam, 6 GeV electrons Thickness 450 μm, pixel size 36x22 μm no B field, noise set to 300 e - Track incident angles from 0 to 40 degrees Validation with Test Beam Data Good agreement of test beam data and simulation

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Important: validate the simulation of energy loss in thin sensors (50 μm) Use test beam data at inclined angles to probe straggling functions at short flight distances G4 simulation can be scales ≈ d/sinθ Expected signal A row,column ≈ A 0 d x,y / (L·sin(θ,ф)) Data collected at normal incidence is used to find the conversion E loss  ADC counts Thin sensors d – pixel size Θ – incident angle MC Data

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Important: validate the simulation of energy loss in thin sensors (50 μm) Use test beam data at inclined angles to probe straggling functions at short flight distances G4 simulation can be scales ≈ d/sinθ Thin sensors

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik VXD performance: Spatial point resolution Perpendicular to the B field

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik VXD performance: Spatial point resolution Along the B field

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET VXD in the ILC environment Stand-alone tracking Able to operate with beam background Impact parameter resolution Req: a < 5 μm (point precision) b < 10 μm (mult. scattering) Developed pattern recognition and Vtx tracking code Algorithm features: Starts with finding triplets in the outer layers Inward search for additional hits Good  2 of helix fit – main criterion to accept track candidates Additional loose cuts against fake tracks composed of background hits A.Vogel LCWS07 t t  6jet √s = 500 GeV

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Performance  = a  b / (p·sin 3/2 θ) Result: a = 4.6 μm < 5 μm b = 8.7 μm < 10 μm Spatial resolution as a function of B field  Performance ok for B = 3-5 T

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik With background: Tracking efficiency, fake tracks Studied 3 scenarios: no background  400 hits in layer1 Integration time of 25 μs(50 μs) in layer1(outer)   75(150) BX, 30k hits in layer1 Integration time of 50 μs(100 μs) in layer1(outer)   150(300) BX

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik With background: Tracking efficiency, fake tracks  Fast read-out is vital !

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik In Summary: Achievements Prototype System with DEPFETs (450µm), CURO and Switcher test CERN: 450 µm  goal S/N ≈ 50 µm sample-clear-sample 320 ns  goal 50 ns s.p. res µm  goal ≈ 4 50 µm Thinning technology established, thickness can be adjusted to the needs of the experiment (~20 µm … ~100 µm) radiation tolerance tested with single pixel structures up to 1 Mrad and ~10 12 n eq /cm 2 Simulations show that the present DEPFET concept can meet the challenging requirements at the ILC VXD.

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Based on the experience made with the prototype system, we are confident that the DEPFET in the present baseline design can meet the requirements at the ILC VXD. In this concept, with the read out at the end of the ladders, the biggest challenge is the required row rate and the capacitive load at the f/e inputs. There are several ideas how to increase the "head room" in this respect, one of those being the use of the emerging 3D technologies. This will be one of the future R&D directions. Power Consumption for the ILC VXD (baseline design) with these new chips layer 1: 8 ladders, 4096x512 pix./ladder  ~ 12W/ladder  ~100 W/layer layer 2-5: 56 ladders, 10496x928 pix./ladder  ~ 21W/ladder  ~1200 W/ 4 layers  1300 W  6.5 … 13 W with pulsed power operation 1/ /100 About 90% of the power is dissipated at the ladder ends (r/o chips DCD) In Summary: Prospects Production of 2nd iteration DEPFETs was finished summer 2007, expect higher internal amplification (g q =0.4nA/e  almost 1 nA/e), better S/N New Switcher3 chips tested and functional New r/o chips DCD designed for read-out of large matrices is under test

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik ….towards a thin demonstrator (in baseline design) DEPFET incl. rad. tolerance Thinning Mechanics chips/system development thin Me./El. Samples interconnections on & off module Engineering module/barrels/ discs… ASIC production: UMC, AMS, IBM, TSMC…. use the best available process DEPFET prototyping and series production of the sensors at the MPI Halbleiterlabor PXD5PXD6 CURO2 SWITCHER2 1 st layer demonstrator SWITCHER3 DCD2 DCD3 SWITCHER4 DCD1

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Backup

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Validation with Test Beam Data

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Fake tracks Inclusion of forward tracking helps in discarding fake tracks

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Array - different ways for read-out 1. Row wise read-out  select row with external gate, read current, clear DEPFET, read current again Advantage  Low power consumption!  No advanced interconnection technologies needed Disadvantage  limited frame rate 2. Hybrid-pixel-like approach: one amp. per pixel Advantage  fast! (~ns), frame rate comparable with hybrid pixels Disadvantage  challenging interconnection between sensor and r/o chip  high power consumption Foreseen for the focal plane at the XFEL 3. Combination of those two  subdivide large arrays into smaller units  smaller cap. load  more relaxed row rate  challenging interconnection (  "3D"?)  find optimum for a specific application balancing the pros and cons under consideration for the ILC VXD

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik The MPI Semiconductor Laboratory (H alb L eiter L abor )  Common Institution of the Max-Planck-Institutes for Physics and for Extraterrestrial Physics  Founded in 1992, since 2000 at the Siemens Campus in Munich  ~50 Scientists, Engineers, Technicians, Students

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik The MPI Semiconductor Laboratory (H alb L eiter L abor )... with modern, custom made equipment m² cleanroom up to class 1... mounting & bondingtest & qualificationsimulation, layout & data analysis... for a full 6" silicon process line

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik Inside the HLL

ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik The Structure of the MPI HLL