Recipient of James Watt Gold Medal for Energy Conservation Keith Tovey ( ) M.A., PhD, CEng, MICE, CEnv Reader Emeritus: University of East Anglia 1 Pathways.

Slides:



Advertisements
Similar presentations
PROPRIETARY Any use of this material without specific permission of the European Climate Foundation is strictly prohibited ROADMAP 2050 A practical guide.
Advertisements

Unconventional Gas and EU Energy Policy
A New Dash for Gas? Future Energy Strategies 29 th May 2012 at Allen & Overy David Odling, Energy Policy Manager Oil & Gas UK.
The challenge in UK power generation Steve Riley, Executive Director, Europe London, 3 December 2010.
Dokumentname > Folie 1 > Vortrag > Autor Potentials for Renewables in Europe Wolfram Krewitt DLR Institute of Technical Thermodynamics Systems.
Energy in the U.S. - Why Wind? Financing Wind Power: The Future of Energy Institute for Professional and Executive Development Santa Fe, N.M. July 25,
DG Energy and Transport, European Commission Fabrizio Barbaso 16/04/2008 EU ENERGY SECURITY STRATEGIES ARF Energy Security Seminar EUROPEAN COMMISSION.
DG Energy and Transport, European Commission Fabrizio Barbaso 17/04/2008 EU RENEWABLE ENERGY PROPOSALS ARF Energy Security Seminar EUROPEAN COMMISSION.
Pakistans Power Sector Need for Reforms By Kalim A. Siddiqui President-Petroleum Marketing Byco Petroleum Paksitan Limited 4 th International Power Generation.
Opportunities from ‘Dynamic Demand Control’
The Future of the Strategy with regard to the Outermost Regions - Brussels, 15 May 2008Note: document not legally binding 1 José RUIZ ESPI RTD.K.3 New.
Energy policy and its implementation in Estonia Renewable energy Madis Laaniste, Energy Department.
1 Providers Perspective on the Future Bill Levis President, PSEG Power Bill Levis President, PSEG Power.
Change Sust Dev Comm 6 Nov Carbon capture and geological storage for Scotland Stuart Haszeldine University of Edinburgh.
1 Recipient of James Watt Gold Medal ARAMCO: Science Pathway: 8th July 2013 The Energy Trilema: The Triple Challenges of Carbon Reduction, Energy Security.
1 Recipient of James Watt Gold Medal Keith Tovey ( ) : MA, PhD, CEng, MICE, CEnv Reader Emeritus in Environmental Science, University of East Anglia Science.
CRed carbon reduction Reader Emeritus in Environmental Sciences; Energy Science Adviser Norwich Business School, University of East Anglia:
1 Recipient of James Watt Gold Medal Keith Tovey ( ) : President Rotary Club of Norwich District 1080 Environment Officer District 1080 ComVoc Chair Rotary.
CRed carbon reduction Reader Emeritus in Environmental Sciences; Energy Science Adviser Norwich Business School, University of East Anglia:
1 Recipient of James Watt Gold Medal Keith Tovey ( ) : MA, PhD, CEng, MICE, CEnv Reader Emeritus in Environmental Science, University of East Anglia Wenhaston:
1 Recipient of James Watt Gold Medal Keith Tovey ( ) : MA, PhD, CEng, MICE, CEnv Reader Emeritus in Environmental Science, University of East Anglia Rotary.
1 Recipient of James Watt Gold Medal Aylsham and District Wildlife Society November 28th 2011 The Triple Challenges of Climate Change, Energy Security.
Energy Security Hard Choices Ahead Keith Tovey ( ) M.A., PhD, CEng, MICE, CEnv Н.К.Тови М.А., д-р технических наук Energy Science Director: Low Carbon.
CRed Keith Tovey M.A., PhD, CEng, MICE, CEnv Energy Science Director: Low Carbon Innovation Centre School of Environmental Sciences, UEA CIWEM - 8 th August.
1 CRed Carbon Reduction N.K. Tovey ( ) M.A, PhD, CEng, MICE, CEnv Н.К.Тови М.А., д-р технических наук Energy Science Director CRed Project Recipient of.
CRed carbon reduction Reader Emeritus in Environmental Sciences; Energy Science Adviser Norwich Business School, University of East Anglia:
1 Recipient of James Watt Gold Medal ARAMCO 3 rd July 2013 Overview of oil, gas and alternative energy industry in the UK and Low Carbon options for the.
1 Recipient of James Watt Gold Medal Keith Tovey ( ) : MA, PhD, CEng, MICE, CEnv Reader Emeritus in Environmental Science, University of East Anglia Glenalmond.
CRed carbon reduction Keith Tovey M.A., PhD, CEng, MICE Energy Science Director: Low Carbon Innovation Centre School of Environmental Sciences, University.
Dokumentname > Folie 1 > Vortrag > Autor External costs of future technologies Wolfram Krewitt DLR Institute of Technical Thermodynamics Systems.
Setting a New Course for Electricity in Ontario Presented to the WNA Annual Symposium by Milton Caplan 2004 September 8.
BREAKOUT SESSION 2 Smart Grid 2-B: Grid Integration – Essential Step for Optimization of Resources Integrating Intermittent Wind Generation into an Island.
Financing Renewable Energy: an introduction to FITs and RHI Andrej Miller Renewable Financial Incentives Office of Renewable Energy Deployment
Community Energy Solutions David Lacey Operations Director.
UK enabling Legislation Renewable Energy Strategy.
Power Play: Energy Market Developments Tri-State Member Services Meeting October 7, 2010 Eric H. Larson VP - ACES Power Marketing.
Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University of Science and Technology (NTNU) KIFEE-Symposium,
First Solar FuelSmart™: Powering Energy Security
Lessons from community energy projects in Wales A brief overview Matthew Leese 1.
“Energiewende” and cost mechanisms Charlotte Loreck Energy and Climate Division Öko-Institut e.V. Berlin for Heinrich Böll Foundation 5 December 2012.
Market4RES –the policy framework
10 February 2009 The Case for Coal Generation Sandy Rae, Energy Management Director.
California Energy Commission 1 Energy Workshops for W&WW Agencies UTILITY STRATEGIES FOR SHIFTING PEAK DEMAND PERIOD WATER & ENERGY USE REGIONAL STRATEGIES:
Taina Wilhelms 1 ENERGY YEAR 2010 Finnish Energy Industries
Energy Year 2014 Electricity Finnish Energy Industries.
Energy. oil and natural gas  supply 62% all energy consumed worldwide  how to transition to new sources?  use until mc of further use exceeds mc of.
Recipient of James Watt Gold Medal for Energy Conservation Keith Tovey ( 杜伟贤 ) M.A., PhD, CEng, MICE, CEnv Reader Emeritus: University of East Anglia
Keith Tovey M.A., PhD, CEng, MICE Energy Science Director: Low Carbon Innovation Centre Marcus Armes CRed Climate Change; Renewable Energy: Hard Choices.
Financing new electricity supply in the UK market with carbon abatement constraints Keith Palmer 08 March 2006 AFG.
An Introduction to the Role of Carbon Capture and Storage in Ukraine Keith Whiriskey.
Background to Solar Thermal Energy Opportunities The need for better control! N.K. Tovey ( 杜伟贤 ) M.A, PhD, CEng, MICE, CEnv 1 West Suffolk College 7 th.
RENEWABLE ENERGY POTENTIALS Projections to 2050 BASED ON THE PRESENTATION of Mohamed El-Ashry Chairman REN 21 3rd Ministerial Meeting in Gleneagles Dialogue,
Energy Trends. 2 Trift bridge 560’ long 333’ high.
International Energy Markets Calvin Kent Ph.D. AAS Marshall University.
1 N.K. Tovey ( 杜伟贤 ) M.A, PhD, CEng, MICE, CEnv Н.К.Тови М.А., д-р технических наук Energy Science Director CRed Project HSBC Director of Low Carbon Innovation.
Energy security Professor Jim Watson Director, Sussex Energy Group University of Sussex Research Fellow, The Tyndall Centre for Climate Change Research.
World Energy Outlook 2006 Scenarios for the World and the European Union Presentation to European Wind Energy Conference Milan, Italy, 7-10 May 2007.
Sixth Northwest Conservation & Electric Power Plan Draft Wholesale Power Price Forecasts Maury Galbraith Northwest Power and Conservation Council Generating.
ENERGY Energy is the capacity of a system to do work Energy is always conserved but … … can be transformed from one form to another Energy, E (unit: 1.
CRed Keith Tovey M.A., PhD, CEng, MICE, CEnv Energy Science Director: Low Carbon Innovation Centre School of Environmental Sciences, UEA Rotarian Keith.
1 Recipient of James Watt Gold Medal Keith Tovey ( 杜伟贤 ) MA, PhD, CEng, MICE, CEnv : Reader Emeritus in Environmental Engineering, Norwich Business School,
1 Recipient of James Watt Gold Medal Keith Tovey ( 杜伟贤 ) MA, PhD, CEng, MICE, CEnv : Reader Emeritus in Environmental Engineering, Norwich Business School,
1 CRed Keith Tovey M.A., PhD, CEng, MICE, CEnv Energy Science Director: Low Carbon Innovation Centre School of Environmental Sciences, UEA Keith Tovey.
1 Recipient of James Watt Gold Medal Keith Tovey ( 杜伟贤 ) : President Rotary Club of Norwich District 1080 Environment Officer District 1080 ComVoc Chair.
1 Recipient of James Watt Gold Medal Keith Tovey ( 杜伟贤 ) MA, PhD, CEng, MICE, CEnv : Reader Emeritus in Environmental Engineering, Norwich Business School,
CRed carbon reduction Reader Emeritus in Environmental Sciences; Energy Science Adviser Norwich Business School, University of East Anglia:
Microgeneration Karl Letten – Change Programme Support Officer (Environment) Change Management.
Stuart Thornton Operations Manager 23th March 2010 East of England the energy region Developing your future in business – The Big Energy Numbers: What.
© OECD/IEA Do we have the technology to secure energy supply and CO 2 neutrality? Insights from Energy Technology Perspectives 2010 Copenhagen,
1 30/09/2016 ENV-5022B / ENVK5023B Low Carbon Energy NUCLEAR POWER – Part 1 N.K. Tovey ( 杜伟贤 ) M.A, PhD, CEng, MICE, CEnv Н.К.Тови М.А., д-р.
Presentation transcript:

Recipient of James Watt Gold Medal for Energy Conservation Keith Tovey ( ) M.A., PhD, CEng, MICE, CEnv Reader Emeritus: University of East Anglia 1 Pathways to an Energy Secure and Low Carbon Future: Hard Choices Ahead Broadland Climate Change Community Champion Teams – May 14 th 2011

Pathways to an Energy Secure and Low Carbon Future Energy Security: Difficult Choices Awareness Raising Effective Management Innovative Technical Solutions Many options for Long Term ~ 2050 But how do we also ensure Energy Security Issues to 2020/5 2 Good Record Keeping and Objective Analysis of data > leading to energy reduction through good management Effective Integration of Technologies

Import Gap Energy Security is a potentially critical issue for the UK On 7 th /8 th December 2011: UK Production was only 39%: 12% from storage and 49% from imports Prices have become much more volatile since UK is no longer self sufficient in gas. Gas Production and Demand in UK 3 UK becomes net importer of gas Completion of Langeled Gas Line to Norway Oil reaches $140 a barrel

Approximate Carbon Emission factors during electricity generation including fuel extraction, fabrication and transport. 4 Impact of Electricity Generation on Carbon Emissions. FuelApprox emission factor Comments Coal900 – 1000g Depending on grade and efficiency of power station Gas400 – 430g Assuming CCGT – lower value for Yarmouth as it is one of most efficient in Europe Nuclear5 – 10gDepending on reactor type Renewables~ 0For wind, PV, hydro Overall UK~530g Varies on hour by hour basis depending on generation mix Norfolk and Suffolk is a very low carbon electricity generation zone in UK But current accounting procedures do not allow regions to promote this. A firm in Norfolk / Suffolk would have only 16% of carbon emissions from electricity consumption Suffolk & Norfolk (2009) ~83g Sizewell B, Yarmouth and existing renewables

Carbon sequestration either by burying it or using methanolisation to create a new transport fuel will not be available at scale required until mid 2020s if then 5 Options for Electricity Generation in Non-Renewable Methods Potential contribution to electricity supply in 2020 and drivers/barriers Energy Review 2002 late 2010 (*) 9th May 2011 (**) Gas CCGT % (at present 45-50%) Available now (but gas is running out) ~2p + nuclear fission (long term) % (France 80%) - (currently 18% and falling) new inherently safe designs - some development needed p nuclear fusionunavailable not available until 2040 at earliest not until 2050 for significant impact "Clean Coal" Coal currently ~40% but scheduled to fall Available now: Not viable without Carbon Capture & Sequestration p ~8.3p +/-3p 8.0p [5 - 11] ~ 9.7p for 1st new nuclear subsequently 7.0p 7.75p [ ] New Coal ~ 10.5p with CCS ~ 13.5p [ ]p - unlikely before 2025 * Electricity Markey Reform Consultation – January 2011 ** Energy Review 2011 – Climate Change Committee Nuclear New Build assumes one new station is completed each year after ?

6 Options for Electricity Generation in Renewable Future prices from * DECC Consultation Document on Electricity Market Reform Jan ** Renewable Energy Review – 9 th May 2011 Climate Change Committee Potential contribution to electricity supply in 2020 and drivers/barriers 2002 (Gas ~ 2p) Jan 2011 (Gas ~ 8.3p) * May 2011 (Gas ~ 8.0p) ** 1.5MW Turbine At peak output provides sufficient electricity for 3000 homes On average has provided electricity for 700 – 850 homes depending on year On Shore Wind ~10% [~6000 x 3 MW turbines] available now for commercial exploitation ~ 2+p ~8.8p +/- 0.8p ~8.2p +/- 0.8p

7 Options for Electricity Generation in Renewable Scroby Sands has a Load factor of 28.8% - 30% but nevertheless produced sufficient electricity on average for 2/3rds of demand of houses in Norwich. At Peak time sufficient for all houses in Norwich and Ipswich Potential contribution to electricity supply in 2020 and drivers/barriers 2002 (Gas ~ 2p) Jan 2011 (Gas ~ 8.3p) * May 2011 (Gas ~ 8.0p) ** On Shore Wind ~10% [~6000 x 3 MW turbines] available now for commercial exploitation ~ 2+p ~8.8p +/- 0.8p ~8.2p +/- 0.8p Off Shore Wind % technical development needed to reduce costs. ~ p ~ p for early projects ~11.5p later 12.5p +/- 2.5 Climate Change Committee (9 th May 2011) see offshore wind as being very expensive and recommends reducing planned expansion by 3 GW and increasing onshore wind by same amount

8 Options for Electricity Generation in Renewable Potential contribution to electricity supply in 2020 and drivers/barriers 2002 (Gas ~ 2p) Jan 2011 (Gas ~ 8.3p) May 2011 (Gas ~ 8.0p) On Shore Wind ~10% [~6000 x 3 MW turbines] available now for commercial exploitation ~ 2+p ~8.8p +/- 0.8p ~8.2p +/- 0.8p Off Shore Wind % technical development needed to reduce costs. ~ p ~ p for early projects ~11.5p later 12.5p +/- 2.5 Micro Hydro Scheme operating on Siphon Principle installed at Itteringham Mill, Norfolk. Rated capacity 5.5 kW Future prices from Electricity Market Reform Consultation or Climate Change Report or RO/FITs where not otherwise specified Hydro (mini - micro) 5% technically mature, but limited potential p 11p for <2MW projects

9 Options for Electricity Generation in Renewable Potential contribution to electricity supply in 2020 and drivers/barriers 2002 (Gas ~ 2p) Jan 2011 (Gas ~ 8.3p) * May 2011 (Gas ~ 8.0p) ** On Shore Wind ~10% [~6000 x 3 MW turbines] available now for commercial exploitation ~ 2+p ~8.8p +/- 0.8p ~8.2p +/- 0.8p Off Shore Wind % technical development needed to reduce costs. ~ p ~ p for early projects ~11.5p later 12.5p +/ Future prices from Electricity Market Reform Consultation or Climate Change Report or RO/FITs where not otherwise specified Hydro (mini - micro) 5% technically mature, but limited potential p 11p for <2MW projects Photovoltaic <1% even assuming 5 GW of installation available, much research needed to bring down costs significantly 16+ p ~ p 25p +/-8 Climate Change Report suggests that 1.6 TWh (0.4%) might be achieved by 2020 which is equivalent to ~ 2.0 GW.

10 Options for Electricity Generation in Renewable Potential contribution to electricity supply in 2020 and drivers/barriers 2002 (Gas ~ 2p) Jan 2011 (Gas ~ 8.3p) * May 2011 (Gas ~ 8.0p) ** On Shore Wind ~10% [~6000 x 3 MW turbines] available now for commercial exploitation ~ 2+p ~8.8p +/- 0.8p ~8.2p +/- 0.8p Off Shore Wind % technical development needed to reduce costs. ~ p ~ p for early projects ~11.5p later 12.5p +/ Future prices from Electricity Market Reform Consultation or Climate Change Report or RO/FITs where not otherwise specified Hydro (mini - micro) 5% technically mature, but limited potential p 11p for <2MW projects Photovoltaic <1% even assuming 5 GW of installation available, much research needed to bring down costs significantly 16+ p ~ p 25p +/-8 Sewage, Landfill, Energy Crops/ Biomass/Biogas ??5% available, but research needed in some areas e.g. advanced gasification p p depending on technology Transport Fuels: Biodiesel? Bioethanol? Compressed gas from methane from waste. To provide 5% of UK electricity needs will require an area the size of Norfolk and Suffolk devoted solely to biomass

11 Options for Electricity Generation in Renewable 11 Future prices from Electricity Market Reform Consultation or Climate Change Report or RO/FITs where not otherwise specified Potential contribution to electricity supply in 2020 and drivers/barriers 2002 (Gas ~ 2p) Jan 2011 (Gas ~ 8.3p) May 2011 (Gas ~ 8.0p) On Shore Wind~10%available now ~ 2+p~8.8p +/- 0.8p~8.2p +/- 0.8p Off Shore Wind % available but costly ~ p~ p12.5p +/- 2.5 Small Hydro5% limited potential p11p for <2MW projects Photovoltaic<<5% available, but very costly 15+ p~ p25p +/-8 Biomass??5% available, but research needed p p depending on technology Wave/Tidal Stream currently < 10 MW may be MW (~0.1%) technology limited- major development not before p No information but likely to be ~20p 19p +/- 6 Tidal 26.5p +/- 7.5p Wave

12 Options for Electricity Generation in Renewable 12 Future prices from Electricity Market Reform Consultation or Climate Change Report or RO/FITs where not otherwise specified Potential contribution to electricity supply in 2020 and drivers/barriers 2002 (Gas ~ 2p) Jan 2011 (Gas ~ 8.3p) May 2011 (Gas ~ 8.0p) On Shore Wind~10%available now ~ 2+p~8.8p +/- 0.8p~8.2p +/- 0.8p Off Shore Wind % available but costly ~ p~ p12.5p +/- 2.5 Small Hydro5% limited potential p11p for <2MW projects Photovoltaic<<5% available, but very costly 15+ p~ p25p +/-8 Biomass??5% available, but research needed p p depending on technology Wave/Tidal Stream currently < 10 MW may be MW (~0.1%) technology limited- major development not before p No information but likely to be ~20p 19p +/- 6 Tidal 26.5p +/- 7.5p Wave

13 Options for Electricity Generation in Renewable 13 Future prices from Electricity Market Reform Consultation or Climate Change Report or RO/FITs where not otherwise specified Potential contribution to electricity supply in 2020 and drivers/barriers 2002 (Gas ~ 2p) Jan 2011 (Gas ~ 8.3p) May 2011 (Gas ~ 8.0p) On Shore Wind~10%available now ~ 2+p~8.8p +/- 0.8p~8.2p +/- 0.8p Off Shore Wind % available but costly ~ p~ p12.5p +/- 2.5 Small Hydro5% limited potential p11p for <2MW projects Photovoltaic<<5% available, but very costly 15+ p~ p25p +/-8 Biomass??5% available, but research needed p p depending on technology Wave/Tidal Stream ~0.1%technology limited-4 - 8p ~20p?? Tidal ~19p Wave ~26.5p Severn Barrage/ Mersey Barrages have been considered frequently e.g. pre war – 1970s, 2009 Severn Barrage could provide 5- 8% of UK electricity needs In Orkney – Churchill Barriers Output ~ GWh per annum - Sufficient for houses in Orkney but there are only 4000 in Orkney. Controversy in bringing cables south Would save tonnes of CO 2 26p +/-5 Tidal Barrages % technology available but unlikely for Construction time ~10 years. In 2010 Government abandoned plans for development

14 Options for Electricity Generation in Renewable 14 Future prices from Electricity Market Reform Consultation or Climate Change Report or RO/FITs where not otherwise specified Potential contribution to electricity supply in 2020 and drivers/barriers 2002 (Gas ~ 2p) Jan 2011 (Gas ~ 8.3p) May 2011 (Gas ~ 8.0p) On Shore Wind~10%available now ~ 2+p~8.8p +/- 0.8p~8.2p +/- 0.8p Off Shore Wind % available but costly ~ p~ p12.5p +/- 2.5 Small Hydro5% limited potential p11p for <2MW projects Photovoltaic<<5% available, but very costly 15+ p~ p25p +/-8 Biomass??5% available, but research needed p p depending on technology Wave/Tidal Stream ~0.1%technology limited-4 - 8p ~20p?? Tidal ~19p Wave ~26.5p Tidal Barrages5 - 15% technology available but unlikely for Construction time ~10 years. In 2010 Government abandoned plans for development 26p +/-5 Geothermal unlikely for electricity generation before 2050 if then -not to be confused with ground sourced heat pumps which consumed electricity

15 Do we want to exploit available renewables i.e onshore/offshore wind and biomass?. Photovoltaics, tidal, wave are not options for next years. [very expensive or technically immature or both] If our answer is NO Do we want to see a renewal of nuclear power ? Are we happy with this and the other attendant risks? If our answer is NO Do we want to return to using coal? then carbon dioxide emissions will rise significantly unless we can develop carbon sequestration within 10 years UNLIKELY – confirmed by Climate Change Committee [9 th May 2011] If our answer to coal is NO Do we want to leave things are they are and see continued exploitation of gas for both heating and electricity generation? >>>>>> Our Choices: They are difficult

16 Our Choices: They are difficult If our answer is YES By 2020 we will be dependent on GAS for around 70% of our heating and electricity imported from countries like Russia, Iran, Iraq, Libya, Algeria Are we happy with this prospect? >>>>>> If not: We need even more substantial cuts in energy use. Or are we prepared to sacrifice our future to effects of Global Warming? - the North Norfolk Coal Field? Do we wish to reconsider our stance on renewables? Inaction or delays in decision making will lead us down the GAS option route and all the attendant Security issues that raises. We must take a coherent integrated approach in our decision making – not merely be against one technology or another

Our looming over-dependence on gas for electricity generation We need an integrated energy supply which is diverse and secure. We need to take Energy out of Party Politics.!

18 The Behavioural Dimension: Awareness raising Social Attitudes towards energy consumption have a profound effect on actual consumption Data collected from 114 houses in Norwich between mid November 2006 and mid March 2007 For a given size of household electricity consumption for appliances [NOT HEATING or HOT WATER] can vary by as much as 9 times. When income levels are accounted for, variation is still 6 times 18

19 Good Management has reduced Energy Requirements Space Heating Consumption reduced by 57% CO 2 emissions reduced by 17.5 tonnes per annum. 19 Performance of ZICER Building

Electricity Consumption in an Office Building in East Anglia Consumption rose to nearly double level of early Malfunction of Air-conditioning plant. Extra fuel cost £ per annum ~£1000 to repair fault Additional CO 2 emitted ~ 100 tonnes. Low Energy Lighting Installed 20

Pilot Lights £9 per week Pilot lights off Pilot Lights turned off during week Good Record Keeping and Analysis can result in significant savings St Pauls Church, Tuckswood Heated by 3 warm air heaters New Strategy: pilot lights off throughout summer and used strategically in winter resulted in an annual saving of: 5400 kWh of gas; 1030 kg of CO 2 ; and a monetary saving of £260 Or a percentage saving of 38% The Behavioural Dimension: Awareness raising

kWh% costRank% Renewables 2008 Norwich3,53579%6 0.0% Ipswich4,34997% % Waveney4,41799% % Broadland4,618103% % Great Yarmouth4,699105% % St Edmundsbury4,869109% % Breckland5,028112% % Forest Heath5,174116% % Babergh5,252117% % South Norfolk5,347119% % Suffolk Coastal5,371120% % North Norfolk5,641126% % Mid Suffolk5,723128% % King's Lynn and West Norfolk5,731128% % UK Average4478 % of average cost of electricity bills compared to National Average Rank position in UK out of 408 Local Authorities Average house in Norwich emits 1.87 tonnes of CO 2 from electricity consumption in Kings Lynn 3.04 tonnes of CO 2 (based on UK emission factors) Average household electricity bill in Norwich is 64% that in Kings Lynn Average Domestic Electricity Consumption in Norfolk and Suffolk

Installations under the Feed In Tariff Scheme (11/05/2011) 23 Technology Domestic Installations Other Installations*Total Number Installed Capacity (MW) Number Installed Capacity (MW) Number Installed Capacity (MW) Norfolk Hydro Micro CHP Photovoltaic Wind Total Suffolk Hydro Micro CHP Photovoltaic Wind Total * Commercial, Industrial and Community Schemes. Note: Chris Huhne announced a potential curtailment of large PV FIT schemes (>50kW) in early February 2011.

Low Carbon Strategies: making efficient use of technology 24 Solar Thermal solutions can provide hot water However, performance can be significantly affected by way normal central heating boiler is used for backup. A factor of two in output has been measured for otherwise identical installations

Low Carbon Strategies: making efficient use of technology 3 units each generating 1.0 MW electricity and 1.4 MW heat 25 e.g. UEAs Combined Heat and Power Improved insulation, improved appliance efficiency, (power packs, lighting etc, etc). Energy conserving technologies e.g. heat pumps, CHP etc.

/98 electricitygas oilTotal MWh Emission factorkg/kWh Carbon dioxideTonnes ElectricityHeat 1999/ 2000 Total site CHP generation exportimportboilersCHPoiltotal MWh Emission factor kg/kWh CO 2 Tonnes Before installation After installation This represents a 33% saving in carbon dioxide 26 Significant Savings in CO2 emissions are possible with CHP

A 1 MW Adsorption chiller Uses Waste Heat from CHP Provides chilling requirements in summer Reduces electricity demand in summer Increases electricity generated locally Saves ~500 tonnes Carbon Dioxide annually. 27 Load Factor of CHP Plant at UEA Demand for Heat is low in summer: plant cannot be used effectively. More electricity could be generated in summer A Paradox: Largest amount of electricity was imported when demand was least! For optimum results: Care in matching demand is needed

Peak output is 34 kW All electricity must be converted from DC to AC by use of inverters. Inverters are only 91% efficient 28 Building Integrated Renewable Electricity Generation Typical Solar Array: ZICER Building, UEA Most use of electricity is for computers DC power packs are typically ~70% efficient Only 2/3rds of costly electricity is used effectively. An integrated system in a new building would have both a DC and AC network. Reduced heat gain in building leading to less air-conditioning requirements.

29 A Pathway to a Low Carbon Future: A summary 4.Using Renewable Energy UEA Advanced Gasifier CHP 5.Offset Carbon Emissions 3.Using Efficient Equipment 1.Raising Awareness 2.Good Management 29

30 Seeking Effective Low Carbon Solutions Some costs for providing a low carbon future Small scale solar PV under the Feed in Tariff ~ £700+ per tonne CO 2 saved On-shore wind under Renewable obligation ~ £90+ per tonne CO 2 saved Cavity Insulation - £30 to - £80 per tonne CO 2 saved i.e. cost negative [based on 30 year] Effective Energy Management can also often be cost negative in terms of CO 2 saved. An effective strategy for a low carbon economy will focus on most cost effective solutions first.

31 Conclusions Lao Tzu ( BC) Chinese Artist and Taoist Philosopher "If you do not change direction, you may end up where you are heading." And Finally! Some costs for providing a low carbon future Energy Security and a Low Carbon Strategies are important for a sustainable and prosperous future and should not focus just on energy generation but also on energy reduction Significant savings in monetary and carbon terms can be achieved through awareness raising Better management can lead to significant and often cheaper solutions for a low carbon future Important to Integrate effectively the use of newer technologies with actual demand e.g. local generation avoiding unnecessary losses – also avoid unnecessary conversion form DC to AC etc.

32

33 Variation in UK Electricity and Demand and Wind Generation. A single wind farm may have moderate variation in output Output smoothed if whole UK is considered. Demand also has significant diurnal variation Data for th February 2011 from Output from nuclear plant is nearly constant difference in variation in nuclear output compared to demand is comparable with difference in demand and wind generation

34 Impact of Electricity Generation on Carbon Emissions. Electricity exported from Norfolk/Suffolk in 2009 to rest of UK ~ 3200 GWh representing a net CO 2 saving of ~ 1.43 Mtonnes At £12.50 per tonne (current EU-ETS price), this represents a benefit of £18 million to rest of UK in carbon saved. However – in 2010, Sizewell B was off line from over 6 months, so is this low carbon electricity sustainable? Is such a reliance on a single source a secure or sustainable? From BBC Website – 27 th May 2008 Hundreds of thousands of homes suffered power cuts after a fault caused an unplanned shutdown at the Sizewell B nuclear power plant in Suffolk. Homes and businesses in London, and East Anglia were affected….. Local generation avoids most transmission and distribution losses and small scale schemes avoid such major power blackouts. However – over decentralisation may lead to distribution grid problems if there is no reinforcement.

35 Ways to Respond to the Challenge: Technical Solutions: Solar Photovoltaic Photovoltaic cells are expensive, but integration of ideas is needed. Output depends on type but varies from ~70kWh to ~100kWh per square meter per year. The New Feed In Tariff form April 1 st will make things more attractive. 41p per unit generated – an extra 3p if exported. But those who have installed PV will get the benefit from increased payments for electricity by those who have not.

* Electricity Markey Reform Consultation – January 2011 ** Energy Review 2011 – Climate Change Committee 36 Options for Electricity Generation in Non-Renewable Methods Potential contribution to electricity supply in 2020 and drivers/barriers Energy Review 2002 late 2010 (*) 9th May 2011 (**) Gas CCGT % (currently %) Available now (but UK gas running out rapidly) ~2p + ~8.3p +/-3p 8.0p [5 - 11] Projection made in/on Wholesale Electricity Price surge in January and December 2010 when Gas imports are high. UK becomes net importer of gas Completion of Langeled Gas Line to Norway Oil reaches $140 a barrel Government Projections of wholesale price of gas generation

37 Energy SourceScaleTo 31/03/11From 01/04/11 Duration (years) Anaerobic digestion500kW Anaerobic digestion>500kW Hydro15 kW Hydro> kW Hydro>100kW - 2MW Hydro>2kW - 5MW Micro-CHP*****<2 kW Solar PV4 kW new Solar PV4 kW retrofit Solar PV>4-10kW Solar PV> kW Solar PV>100kW - 5MW Solar PVStandalone Wind1.5kW Wind> kW Wind> kW Wind> kW Wind>500kW - 1.5MW Wind>1.5MW - 5MW Existing generators transferred from RO99.4 to 2027 Export Tariff33.1 Feed in Tariffs – Introduced 1 st April 2010 ***** for first installations

38 Raising Awareness A Toyota Corolla (1400cc): 1 party balloon every 60m. 10 gms of carbon dioxide has an equivalent volume of 1 party balloon. Standby on electrical appliances up to kWh a year balloons. (up to £15 a year) A Mobile Phone charger: > 10 kWh per year ~ 500 balloons each year. Filling up with petrol (~£55 for a full tank – 40 litres) kg of CO2 (5% of one hot air balloon) How far does one have to drive in a small family car (e.g cc Toyota Corolla) to emit as much carbon dioxide as heating an old persons room for 1 hour? 1.6 miles At Gaoan No 1 Primary School in Xuhui District, Shanghai A tumble dryer uses 4 times as much energy as a washing machine. Using it 5 times a week will cost ~ £100 a year just for this appliance alone and emit over half a tonne of CO 2. School children at the Al Fatah University, Tripoli, Libya

39 Mostly Eye and Thetford Scroby Renewable Energy Generation in Suffolk and Norfolk Generation in GWh stationsGWh Capacity (kW) Load Factor Biomass % Landfill Gas % Off-shore Wind % On-shore Wind % Sewage Gas % Total Total Demand in Norfolk and Suffolk GWh % Renewables 8.9% National Average 7.8% Target 10.4%

40 How many people know what 9 tonnes of CO 2 looks like? 5 hot air balloons per person per year. On average each person in UK causes the emission of 9 tonnes of CO 2 each year. "Nobody made a greater mistake than he who did nothing because he thought he could do only a little." Edmund Burke (1727 – 1797)