Kent Burr, Adrian Ivan, Don Castleberry, Jim LeBlanc Detector Technology Lab, GE Research Design of Scintillator Arrays for Dual-End Depth-of- Interaction.

Slides:



Advertisements
Similar presentations
GEM Chambers at BNL The detector from CERN, can be configured with up to 4 GEMs The detector for pad readout and drift studies, 2 GEM maximum.
Advertisements

1 Continuous Scintillator Slab with Microchannel Plate PMT for PET Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat 2, Fukun Tang 2,
PET Design: Simulation Studies using GEANT4 and GATE - Status Report - Martin Göttlich DESY.
Hybrid Detector Array ( ) The RIKEN-ATOMKI hybrid array Gábor Kalinka (ATOMKI, Debrecen) 3rd Japan-Hungary Joint Seminar on Physics in Modern Science.
*Shuji Maeo 1,2, Takayuki Yanagida 1, Yuui Yokota 1 and Akira Yoshikawa 1,3 1 Division of Physical Process Design, Institute of Multidisciplinary Research.
Observation of Fast Scintillation of Cryogenic PbI 2 with VLPCs William W. Moses, 1* W.- Seng Choong, 1 Stephen E. Derenzo, 1 Alan D. Bross, 2 Robert Dysert,
Tagger Electronics Part 1: tagger focal plane microscope Part 2: tagger fixed array Part 3: trigger and digitization Richard Jones, University of Connecticut.
ipno.in2p3.fr Milano - October 2006IPNO-RDD-Jean Peyré1 Measurements of CsI(Tl) Crystals with PMT and APD Jean Peyré Milano - Oct 2006.
1 A Design of PET detector using Microchannel Plate PMT with Transmission Line Readout Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat.
Studies of Small Scintillating Cells with Modified Geometries Alexander Dyshkant for NICADD at NIU.
Nustar/crystal simulations B. Genolini Crystal: CsI(Tl) (Saint Gobain), wrapped with reflector (VM2000, Tyveck?) Geometry:
Crystals and related topics J. Gerl, GSI NUSTAR Calorimeter Working Group Meeting June 17, 2005 Valencia.
1 A Grating Spectrograph for the LCLS Philip Heimann Advanced Light Source Observe the spontaneous radiation spectrum of the individual undulators Observe.
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
OPTICAL DETECTORS IN FIBER OPTIC RECEIVERS.
Optical Receiver Lecture 6.
CCD Detectors in High- Resolution Biology Jian Guan
A High-speed Adaptively-biased Current- to-current Front-end for SSPM Arrays Bob Zheng, Jean-Pierre Walder, Henrik von der Lippe, William Moses, Martin.
Xiaodong Wang ( 王晓冬 ) School of Nuclear Science and Technology Lanzhou University, Lanzhou, China MPGD activities at Lanzhou University July 5, 2013.
High spatial resolution measurement of depth-of-interaction of a PET LSO crystal Aliz Simon a László Balkay b, István Chalupa b, Gábor Kalinka a, András.
Very High Resolution Small Animal PET Don J. Burdette Department of Physics.
Optimization of LSO for Time-of-Flight PET
RAD2012, Nis, Serbia Positron Detector for radiochemistry on chip applications R. Duane, N. Vasović, P. LeCoz, N. Pavlov 1, C. Jackson 1,
Introduction on SiPM devices
Photon detection Visible or near-visible wavelengths
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
The Design of Barrel Electromagnetic Calorimeter (BEMC) October Lu Jun-guang.
P. Lecoq CERN 1 October 2012 NSS-MIC Annaheim, October 30th, 2012 How Photonic Crystals can improve scintillator timing resolution Paul Lecoq, E. Auffray,
Department of Radiology UNIVERSITY OF PENNSYLVANIA 1 Investigation of LaBr 3 Detector Timing Resolution A.Kuhn 1, S. Surti 1, K.S. Shah 2, and J.S. Karp.
Development of New Detectors for PET Imaging at BNL DOE/JLAB Meeting Bethesda, MD May 20, 2004 Craig Woody Physics Dept Brookhaven National Lab RatCAPBeta.
February 14, 2013 Study of a Cherenkov TOFPET modulePeter Križan, Ljubljana Samo Korpar, Rok Dolenec, Peter Križan, Rok Pestotnik, Aleš Stanovnik J. Stefan.
FLC Group Test-beam Studies of the Laser-Wire Detector 13 September 2006 Maximilian Micheler Supervisor: Freddy Poirier.
M. McConnell1, J. R. Macri, J. M. Ryan, K. Larson, L. -A. Hamel, G
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
Performance limits of a 55  m pixel CdTe detector G.Pellegrini, M. Lozano, R. Martinez, M. Ullan Centro Nacional de Microelectronica, Barcelona, 08193,
EDGE-BASED PEAK POSITION SEARCH ALGORITHM FOR PET DETECTORS Presenter: Kun Di Advisor: Dr. Chung-E Wang Dr. Ted Krovetz Department of Computer Science.
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
CMS ECAL Laser Monitoring System Christopher S. Rogan, California Institute of Technology, on behalf of the CMS ECAL Group High-resolution, high-granularity.
Position sensitive scintillation detectors for the trigger system in the space experiment NUCLEON Supervisors: Anatoliy I. Kalinin a Students: Irina Cioara.
Increase in Photon Collection from a YAP:Ce Matrix Coupled to Wave Lenght Shifting Fibres N. Belcari a, A. Del Guerra a, A. Vaiano a, C. Damiani b, G.
8 th Aug 2009 ANL User Workshop Towards Nuclear Spectroscopy using a Position Sensitive Avalanche Photo Diode S. Lakshmi University of Massachusetts Lowell.
Seoul National University Functional & Molecular Imaging System Lab Progress in Nuclear Imaging Mikiko Ito, PhD Dept. of Nuclear Medicine, Seoul National.
DEAR SDD --> SIDDHARTA
Timing Studies of Hamamatsu MPPCs and MEPhI SiPM Samples Bob Wagner, Gary Drake, Patrick DeLurgio Argonne National Laboratory Qingguo Xie Department of.
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
28 June 2007G. Pauletta: ALCPG Tests of IRST SiPMs G. Pauletta Univ. & I.N.F.N. Udine Outline 1.IRST SiPMs : baseline characteristics 2.first application.
E.Guschin (INR,Moscow) 3 May 2006Calorimeter commissioning meeting Status of PRS/SPD detector Cosmic test results Installation/tuning of monitoring system.
Gain stability and the LYSO beam radiation monitor measurements
Optical Receivers Theory and Operation
Medical applications of particle physics General characteristics of detectors (5 th Chapter) ASLI YILDIRIM.
Scintillators suitable for PET applications must be characterized by a high efficiency for gamma-ray detection, determined by a high density and atomic.
Peter Dendooven LaBr 3 and LYSO monolithic crystals coupled to photosensor arrays for TOF-PET Physics for Health in Europe Workshop February 2-4, 2010,
1 Rome, 14 October 2008 Joao Varela LIP, Lisbon PET-MRI Project in FP7 LIP Motivations and Proposals.
Nuclear Medicine Instrumentation 242 NMT 1 Dr. Abdo Mansour Assistant Professor of radiology
Status of NEWCHOD E.Guschin (INR), S.Kholodenko (IHEP), Yu.Kudenko (INR), I.Mannelli (Pisa), O.Mineev (INR), V.Obraztsov (IHEP), V.Semenov(IHEP), V.Sugonyaev.
Update on works with SiPMs at Pisa Matteo Morrocchi.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
12 th Pisa Meeting, Isola d’Elba, 25 May 2012 Politecnico di Milano, Italy New Development of Silicon Drift Detectors for Gamma-ray.
Hybrid Detector(s) for Complete Gamma Ray Spectroscopy S. S. Bhattacharjee, R Raut, S S Ghugre, A K Sinha UGC-DAE Consortium For Scientific Research, Kolkata.
Gamma Spectrometry beyond Chateau Crystal J. Gerl, GSI SPIRAL 2 workshop October 5, 2005 Ideas and suggestions for a calorimeter with spectroscopy capability.
Ilhan TAPAN* and Fatma KOCAK
Performance of scintillation pixel detectors with MPPC read-out and digital signal processing Mihael Makek with D. Bosnar, V. Gačić, L. Pavelić, P. Šenjug.
Ultra fast SF57 based SAC M. Raggi Sapienza Università di Roma
Frontier Detectors for Frontier Physics
Development of a High Precision Axial 3-D PET for Brain Imaging
Development of a Large Area Gamma-ray Detector
一种基于晶体间光分享原理的深度测量PET探测器
Status Report on MCP PET Simulation
Presentation transcript:

Kent Burr, Adrian Ivan, Don Castleberry, Jim LeBlanc Detector Technology Lab, GE Research Design of Scintillator Arrays for Dual-End Depth-of- Interaction Encoding Small-Animal PET Detectors

Shrink the bore and use long crystals  Increase sensitivity but … Parallax error  Lose resolution No DOI PET Scanner 3D Position Information Breaks Inverse Relationship between Sensitivity and Resolution Position Sensitive APD Scintillator block DOI resolution = 5 mm Actual Event Line Recon Line Challenges in Small-Animal PET *animated

Position Sensitive APD* introduction high resistivity layer on back of APD D A B C 4 corner contacts on back deep-diffused silicon APD optical photons incident on front surface *PSAPDs manufactured by Radiation Monitoring Devices, Inc., Watertown, MA, USA. x = (A+B)-(C+D) (A+B+C+D) y = (A+D)-(B+C) (A+B+C+D) Gain Bias Voltage (V) T = 20°C Gain Gain Temperature Coefficient (%/ °C) normal operating range

Bottom PSAPD pulse height Top PSAPD pulse height 511 keV DOI = 0mm (center of crystals) Top PSAPD Scintillator array Bottom PSAPD z scintillator slab PMT 22 Na source Depth-of-Interaction Illustration *animated

Top PSAPD Scintillator array Bottom PSAPD z scintillator slab PMT 22 Na source Bottom PSAPD pulse height Top PSAPD pulse height Top PSAPD Scintillator array Bottom PSAPD z scintillator slab PMT 22 Na source Bottom PSAPD pulse height Top PSAPD pulse height Top PSAPD Scintillator array Bottom PSAPD z scintillator slab PMT 22 Na source Bottom PSAPD pulse height Top PSAPD pulse height Top PSAPD Scintillator array Bottom PSAPD z scintillator slab PMT 22 Na source Bottom PSAPD pulse height Top PSAPD pulse height Top PSAPD Scintillator array Bottom PSAPD z scintillator slab PMT 22 Na source Bottom PSAPD pulse height Top PSAPD pulse height Top PSAPD Scintillator array Bottom PSAPD z scintillator slab PMT 22 Na source Bottom PSAPD pulse height Top PSAPD pulse height Top PSAPD Scintillator array Bottom PSAPD z scintillator slab PMT 22 Na source Bottom PSAPD pulse height Top PSAPD pulse height Depth-of-Interaction Illustration *animated

Scintillator Array Design scintillator array attribute scintillator material array size, crystal dimensions reflector material crystal side surface roughness selection mixed lutetium silicate, MLS 8x8 array, 1.65mm x 1.65mm x 22mm Teflon tape VM2000 (3M Corp.) P (polished, 7nm rms) M5 (lapped with 5  m grit, 16nm rms) M10 (lapped with 10  m grit, 700nm rms) M20 (lapped with 20  m grit, 1000nm rms) reason high light output, high density & Z, fast decay PSAPD size, resolution, sensitivity, crystal cutting capabilities experimental

VM2000Teflon reflector material

VM2000 laser cut film much faster assembly improved reproducibility reduced dead-space somewhat reduced light collection efficiency (~75% of Teflon) Teflon best light collection time-consuming to assemble well-known problems with reproducibility, shrinkage, wicking, etc. 1mm

Scintillator Array Experiments Black P P P P P P M5 M10 M20 4 different surfaces (P, M5, M10, M20) 2 reflector materials (Teflon, VM2000) 5x5 array of crystals (parallel data acquisition under identical conditions) 1.9mm x 1.9mm x 20mm MLS crystals 14mm x14mm PSAPD arrangement chosen so that: each row and column have at least one of each crystal type central 3x3 of array has at least two crystals of each type “black” crystal used for unambiguous identification of crystals each corner crystal has different surface each 2x2 in corner has one crystal of each type, except for corner that has “black” crystal

Scintillator Array Experiments: Results PolishedM5M10M20 Energy Resolution (%) Surface Treatment VM2000, 12.4°C Teflon, 19.6°C Teflon, 9.8°C Timing Resolution (ns) PolishedM5M10M20 Surface Treatment Teflon, 12.1°C Roughening the surface improves DOI … … without degrading energy resolution and timing resolution.

Detector Evolution *animated

Detector Specifications PSAPD 14 mm x 14 mm active area operated at 10°C and -1630V gain ~950 leakage current ~1µA Scintillator array 8x8 MLS 1.65 mm x 1.65 mm x mm 1.75 mm pitch 3M VM2000 reflective film rough side surfaces, polished ends coupled to PSAPD using Cargille Meltmount Electronics corner contacts: low noise JFET input wide bandwidth transimpedance amplifier with a 100 kohm transimpedance gain trigger and energy signal from analog sum of corner contacts

Flood Histogram – 22 Na Energy Window: keV

DOI Resolution Energy Window: keV Integrated counts from all crystals. Normalized Counts Depth (mm)

Width of Electronically Collimated Beam scintillator slab PMT 22 Na source z

DOI Resolution (deconvolved) Energy Window: keV Integrated counts from all crystals. Normalized Counts Depth (mm)

DOI Resolution Map* DOI Resolution (FWHM, mm)* Crystal Column Number Crystal Row Number *without deconvolution of beam width

Energy Resolution Map Crystal Column Number Crystal Row Number Energy Resolution (FWHM, %)

Timing Resolution Distribution Timing Resolution (FWHM, ns) Number of Crystals

Radiation Damage? (preliminary measurements) Small-animal PET is not a “high radiation” environment. *depending on scanner utilization assumptions small-animal scanner 14mm x 14mm PSAPDs ~10 cm bore 22 mm long MLS crystals Exposed PSAPD to years* equivalent accumulated 511 keV flux test setup 22 Na source 8mm x 8mm PSAPD 4x4 array of 22 mm long MLS crystals short distance (bias to operating voltage for entire exposure, 10°C) pre-radiation post-radiation No Negative Impact on Performance Observed

Conclusion Demonstrated High-Res DOI PET detector with: 8x8 array of 1.65 mm x 1.65 mm x mm crystals, with surface treatments chosen to optimize DOI resolution Minimal dead-space within array Compact front-end electronics No radiation damage effects observed Tileable design Excellent performance DOI resolution of <3 mm FWHM Energy resolution of ~16% FWHM Timing resolution of ~4 ns FWHM (vs. plastic)

References DOI in PET L. R. MacDonald and M. Dahlbom, "Parallax Correction in PET Using Depth of Interaction Information," IEEE Trans. Nucl. Sci., vol. 45, no. 4, pp – 2237, Aug Y. Shao, R. M. Manjeshwar, F. P. Jansen, P. N. Kumar, A. F. Chatziioannou, “Simulation Studies for a High Resolution and High Sensitivity Small Animal PET with DOI Detection Capability,” presented at IEEE Medical Imaging Conference, M6-11, Portland, OR, Oct dual-end readout W. W. Moses, S. E. Derenzo, "Design Studies for a PET Detector Module Using a PIN Photodiode to Measure Depth of Interaction," IEEE Trans. Nucl. Sci., vol. 41, pp – 1445, Aug Y. Shao, K. Meadors, R. W. Silverman, R. Farrell, L. Cirignano, R. Grazioso, K. S. Shah, S. R. Cherry, "Dual APD Array Readout of LSO Crystals: Optimization of Crystal Surface Treatment," IEEE Trans. Nucl. Sci., vol. 49, no. 3, pp. 649 – 654, June PSAPDs K. S. Shah, R. Farrell, R. Grazioso, E. S. Harmon, E. Karplus, "Position-Sensitive Avalanche Photodiodes for Gamma- Ray Imaging," IEEE Trans. Nucl. Sci., vol. 49, no. 4, pp – 1692, Aug MLS C. M. Pepin, P. Berard, R. Lecomte, "Comparison of LSO, LGSO and MLS Scintillators," in Proc. IEEE Nuclear Science Symposium, vol. 1, San Diego, CA, Nov. 2001, pp. 124 – 128. VM2000 R. S. Miyaoka, S. G. Kohlmyer, T. K. Lewellen, "Performance Characteristics of Micro Crystal Element (MiCE) Detectors," IEEE Trans. Nucl. Sci., vol. 48, no. 4, pp – 1407, Aug Acknowledgment K. Shah and R. Farrell (RMD). T. Lewellen, R. Miyaoka, and M. Janes (U. Wash).