Thomas Nilsson, CERN EP/IS Exotic Nuclei and Radioactive Beams at Low Energy EPS-12 Trends in Physics, Budapest August 29 2002 Exotic Nuclei and Radioactive.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

ISAC Physics Working Group Convenors Malcolm Butler and Barry Davids.
Grupo de Física Nuclear Experimental IEMIEM CSIC Curso de Doctorado Estructura Nuclear M.J.G. Borge, IEM, CSIC 8 Junio 2007 Estudio experimental de la.
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
Unstable vs. stable nuclei: neutron-rich and proton-rich systems
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
A.B. Balantekin #, J.H. de Jesus #, R. Lazauskas*, C. Volpe* # #University of Wisconsin, Madison, USA *IPN, Orsay (France) A Conserved Vector Current test.
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Radioactive Ion Beams: where are we now experimentally? M. Huyse K.U. Leuven Moriond, March 2003 Opening page.
 asymmetry parameter measurements in nuclear  -decay as a probe for non-Standard Model physics K.U.Leuven, Univ. Bonn, NPI Rez (Prague), ISOLDE CERN.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
ISCC 24 May 2004L.M. Fraile L.M. Fraile, CERN PH/IS ISOLDE scientific coordinator’s report ISOLDE Collaboration Committee 24 th May 2004 ISOLDE scientific.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
1 Nuclear physics and Astrophysics at CERN (10/10-13/2005) Nuclear Physics and Astrophysics at CERN Details of physics interests and methods for studies.
Nuclear structure investigations in the future. J. Jolie, Universität zu Köln.
Decay Spectroscopy Working Group Nuclear Structure Theory Morten Hjorth-Jensen – Shell Structure and Interactions Ivan Borzov – Theory of  Decay Applications.
NUSTAR Nuclear Structure, Astrophysics, Reactions NUSTAR is the biggest collaboration in FAIR The collaboration unites 450 scientists from 98 institutions.
* Spokesperson: Isao Tanihata - Beijing and Osaka Co-spokesperson: Hans Geissel – GSI Chair of Collaboration board: Juha Äystö – Helsinki Co-chair: Christoph.
Spin-isospin studies with the SHARAQ Spectrometer Tomohiro Uesaka & Y. Sasamoto, K. Miki, S. Noji University of Tokyo for the SHARAQ collaboration Aizu2010.
TITAN Mass Measurement of 11 Li (and other halo nuclei) Ryan Ringle, TRIUMF.
Nuclear physics: the ISOLDE facility
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
CERN NuPAC meeting Dec 2005 The future of ISOLDE: accelerated radioactive beams Peter Butler 1.HIE-ISOLDE 2.EURISOL.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Mass measurements using low energy ion beams -1- C. Thibault 31 mars 2004 Motivations to measure masses Present status Experimental methods for direct.
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
K. Riisager, TA8 ISOLDEEURONS PCC-Meeting, Mainz (Germany), April 2006 Recent highlights from ISOLDE News from the facility –Users meeting, February.
-NUCLEUS INTERACTIONS OPEN QUESTIONS and FUTURE PROJECTS Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
Pygmy Dipole Resonance in 64Fe
1 stephan ettenauer for the TITAN collaboration Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF Weakly Bound Systems in Atomic.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Masses of tripline nuclei Frank Herfurth, ISOLDE/CERN.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
European Isotope Separation On-Line Radioactive Nuclear Beam Facility A preliminary design study of the next- generation European ISOL RNB facility GANIL,
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
Electromagnetic probes MAMI, Jefferson Lab & MAX-Lab Daniel Watts University of Edinburgh.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
ISOLDE at the turn of the millennium* Juha Äystö Helsinki Institute of Physics Helsinki, Finland * As seen by the ISOLDE Physics Group.
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
New approaches to the study of the nucleus Juha Äystö New approaches to the study of the nucleus Juha Äystö Thanks to H. Fynbo, K. Jungmann, P. Kienle,
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
ISOLDE – High-lights and Future Plans Maria J. G. Borge, CERN, PH-Dept.
1 Study of 7 Be relativistic fragmentation in nuclear track emulsion Denis Artemenkov, VBLHE, JINR ( for the BECQUEREL collaboration )
Fusion of light halo nuclei
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
SECONDARY-BEAM PRODUCTION: PROTONS VERSUS HEAVY IONS A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany  Present knowledge on.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005 Overview and Motivation Mass Measurements at ISOLDE … … and elsewhere Conclusions Mass Measurements.
Correlation measurements in nuclear  -decay O.Naviliat-Cuncic Laboratoire de Physique Corpusculaire de Caen and Université de Caen Basse-Normandie NuPAC.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
Alexander Herlert High-precision mass measurements for reliable nuclear-astrophysics calculations CERN, PH-IS NIC-IX, CERN, Geneva, June 29, 2006.
Nuclear physics: the ISOLDE facility Magdalena Kowalska CERN, PH-Dept. on behalf of the CERN ISOLDE team Lecture 2:
Summary: Physics Opportunities for ISOLDE and n_TOF Peter Butler.
Technical solutions for N=Z Physics David Jenkins.
TRIGA-SPEC: Developement platform for MATS and LaSpec at FAIR Double-beta transition Q-value measurements with TRIGA-TRAP NUSTAR Meeting Christian.
How can one produce rare isotopes? Question Slid 3 Hendrik Schatz NNPSS 2012, Slide 3 Rare Isotope Production Techniques: Uniqueness of FRIB Target spallation.
Lecture at the MEDICIS-PROMED Summer School
Finnish participation at ISOLDE
The DESIR facility at SPIRAL2
Yuliya Aksyutina for the LAND-R3B collaboration Motivation
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
The science programme at ISOLDE
Study of the resonance states in 27P by using
Presentation transcript:

Thomas Nilsson, CERN EP/IS Exotic Nuclei and Radioactive Beams at Low Energy EPS-12 Trends in Physics, Budapest August Exotic Nuclei and Radioactive Beams at Low Energy EPS-12 Trends in Physics, Budapest August Radioactive beams Rationale Production - separation CERN-ISOLDE Research on nuclei at the driplines Interdisciplinary uses of RIB REX-ISOLDE Outlook ISOLDE-RNB EURISOL

Why study the atomic nucleus? A few-body system of hadrons (neutrons and protons) with many remaining question marks “Largest” system where strong and weak interaction are manifested “Applications” –Astrophysics –Condensed matter –Energy –Medicine

Nuclear chart N = Z ?

Research with Radioactive Ion Beams Nuclear Physics Nuclear Decay Spectroscopy and Reactions Structure of Nuclei Exotic Decay Modes Atomic Physics Laser Spectroscopy and Direct Mass Measurements Radii, Moments, Nuclear Binding Energies Nuclear Astrophysics Dedicated Nuclear Decay/Reaction Studies Element Synthesis, Solar Processes f(N,Z) Fundamental Physics Direct Mass Measurements, Dedicated Decay Studies - WI CKM unitarity tests, search for  - correlations, right-handed currents Applied Physics Implanted Radioactive Probes, Tailored Isotopes for Diagnosis and Therapy Condensed matter physics and Life sciences

RIB - Production reactions Spallation Fragmentation Fission –n- (thermal or energetic), p-induced –Photofission (e-beam) 1 GeV p p n U F r + spallation 1 1 L i X + + fragmentation C s Y + + fission

Radioactive beams – production and separation

In-flight production (e.g. 1 GeV/u U

ISOL (e.g.

ISOL target

Resonant LASER Ion Source

Nuclear

RIB facilities worldwide

Spins Moments Spins Moments Elastic Scattering Elastic Scattering Momentum Distributions Momentum Distributions Reaction Cross Sections Reaction Cross Sections Beta Decay Beta Decay Unbound Nuclei Unbound Nuclei Experimental Studies of Dripline Nuclei Masses

Halo nuclei at ISOLDE s s s s s -1

Measurement of the Magnetic Moment of 11 Be

11 Be The large radius of 11 Be: halo structure or deformation?  I ( 11 Be) = (3)  N Comparison to theoretical approaches -1.5  N <  I ( 11 Be) < -1.6  N for: strongsmall degrees of deformation Result indicates a rather pure halo structure with hardly any additional deformation W. Geithner et al., PRL 83 (1999) 3793

Young93 (reaction) Wouters88 (TOFI) Kobayashi91 (reaction) Thibault75 (mass spec.) Li two-neutron separation energy (keV) mass measurements of 11 Li AME ± 27 keV D. Lunney  =  /(2  S 2n ) 1/2

Mass measurement of 11 Li at ISOLDE with MISTRAL AME: S 2n = 303 ± 27 keV Mistral should achieve < 20 keV D. Lunney RF ion counting reference ion source 1 m magnet (22 T) slit 0.4 mm

11 Li 11 Be 10 Be+n 9 Be+2n 8 Be+3n 8 Li+t 9 Li+d (MeV) 3/ Open delayed-particle channels in the 11 Li beta decay  e-e- Q  d = –S 2n MeV T. Nilsson, G. Nyman, K. Riisager HFI 129(2000)67 11 Be  ½+½+ ½-½-

10 Be (1n recoils) Tritons+deuterons 11 Li 11 Be* x+y  E, gas E, Si  11 Li, charged particles

20.6  6 He+n Li 3/ Be + n 11 Be - Be + 2n Li + d Li + t  3n ½-½- ½+½+ E(MeV) B GT /MeV Li M.J.G. Borge et al, PRC 55 (1997) R8 I.Mukha et al., PL B367 (1996) 65 M.J.G. Borge et al.. Nucl. Phys. A613 (1997) 199 Beta-strength function

14Be

ISOLDE Physics programme 2001

Systematics of the superallowed transitions I. S. Towner and J.C. Hardy,Proc. 5th Int. Symp. on Weak and Electromagnetic Interactions in Nuclei: WEIN'98, , Santa Fe, (1998) and this work (2001). Superallowed Fermi transitions Test of CVC (Conserved Vector Current) hypothesis

CKM (Cabibbo-Kobayashi-Maskawa) matrix unitarity  unitarity is violated by 2.2  New physics or bad corrections? Test at extreme -> 74 Rb … and later 62 Ga

number of ions frequency (kHz) MIS RAL ISOLTRAP IS384 Complete spectroscopy on Fermi  -emitter 74 Rb Results: 1) non-analog 0 +  0 + transition observed  estimate for the Coulomb mixing 2) mass of 74 Rb (ISOLTRAP & MISTRAL) 3) mass of the daughter 74 Kr (ISOLTRAP) 2) & 3)  Q EC value T 1/2 = 64.9 ms! 0+0+ <0.07%

Radioactive ions as “spies” (PAC) in high-T c superconductors… … or as dopants in semiconductors that change with time. Condensed matter physics M. Deicher, Europhysics News (2002) Vol. 33 No. 3

Biomedical Research at ISOLDE Example: samarium isotopes in vivo dosimetry by positron emission tomography (PET) 142-Sm ( , T 1/2 = 72m)  142-Pm (  , T 1/2 = 40s) therapy 153-Sm (  , T 1/2 = 47h) PET scan of a rabbit 60 min p.i. of ISOLDE produced 142-Sm in EDTMP solution Future tool?

IS393 - Nuclear properties in r-process vicinity

Post-acceleration

REX-ISOLDE

d( 9 Li, 10 Li*)p using REX-ISOLDE 0 keV E ex ( 10 Li) =

A second-generation RIB facility at CERN? – ISOLDE-RNB Second generation RNB facility using the SPL as driver 100  A on converter Post-acceleration to 100 MeV/u (cyclotron/LINAC) Storage/re-cycler ring

Ideas for exotic probes for RIB p-bar – antiprotonic atoms –Intersecting storage ring with 10 9 p-bar stored Electron cooling on both rings Multi turn injection Merging reactions   – muonic atoms –Cyclotron trap (PSI) –Hydrogen layer (RIKEN-RAL) –Storage ring

Conclusions RIB are crucial in widening our understanding of the nuclear system when stretching the parameters Low-energy RIBs with good beam quality is the optimal starting point for decay studies, laser physics, traps etc. RIB overcome partly the fact that we now only have the stable and long-lived “ashes” of astrophysical processes RIB and techniques used in the production and separation have important connections to other research fields Large physics output obtained with “first-generation” RIB facilities – time to make a major step forward

Acknowledgements Collaborations : IS304 (Mainz, Leuven, Montreal, CERN) IS320 (Aarhus, CERN, Darmstadt, Gothenburg, Madrid, Orsay) IS367 (Gothenburg, Aarhus, Madrid, CERN, Darmstadt, Örebro) IS374 (Caen, Gothenburg, Aarhus, Madrid, Troitsk, Orsay, Mainz, CERN, Darmstadt) IS376 (Gothenburg, Aarhus, Madrid, Stockholm, CERN, Darmstadt) IS402 (Orsay, GSI, MSU, Munich, CERN, Sao Paulo)