Presentation is loading. Please wait.

Presentation is loading. Please wait.

Radioactive Ion Beams: where are we now experimentally? M. Huyse K.U. Leuven Moriond, March 2003 Opening page.

Similar presentations


Presentation on theme: "Radioactive Ion Beams: where are we now experimentally? M. Huyse K.U. Leuven Moriond, March 2003 Opening page."— Presentation transcript:

1 Radioactive Ion Beams: where are we now experimentally? M. Huyse K.U. Leuven Moriond, March 2003 Opening page

2 The exploration of the chart of nuclei 284 isotopes with T 1/2 > 10 9 year Our beams till 1989 !

3 The exploration of the chart of nuclei <1940 495

4 The exploration of the chart of nuclei <1940 1940 495 822 Reactors: n on U

5 The exploration of the chart of nuclei <1940 1940 1950 495 822 1244 First Isotope Separator On-Line (ISOL) experiment Niels Bohr Institute 1951 fast n on U: Kr and Rb isotopes

6 The exploration of the chart of nuclei <1940 1940 1950 1960 495 822 1244 1515 Selective detection method:  decay

7 The exploration of the chart of nuclei <1940 1940 1950 1960 1970 495 822 1244 1515 2010 Light-ion induced spallation Heavy-ion induced fusion

8 The exploration of the chart of nuclei <1940 1940 1950 1960 1970 1980 495 822 1244 1515 2010 2270 Projectile and target fragmentation + In-flight separation

9 The present chart of nuclei stable  + decay  - decay  decay p decay spontaneous fission Around 3000 of the expected 6000 nuclei have been observed -Explaining complex nuclei from basic constituents -The size of the nucleus: halos and skins -Isospin dependence of the nuclear force -Measuring and predicting the limits of nuclear existence -Doubly-magic nuclei and shell structure far from stability -The end of Mendeleev’s table: superheavies -Understanding the origin of elements -Testing the Standard Model -Applications in materials and life sciences

10 driver accelerator or reactor thin targethigh-temperature thick target fragment separator experiment detectors spectrometers... ion source mass separator storage ring In Flight (IF)Isotope Separator On Line (ISOL) heavy ions -fusion -fragmentation light and heavy ions, n, e -spallation -fission -fusion -fragmentation post accelerator GeV eventually slowed down  s meV to 100 MeV/u ms to several s good beam quality gas cell ~ ms IF versus ISOL

11 First generation Radioactive Beam Projects in Europe CRC, Louvain-la-Neuve, Belgium delivering ISOL beams since 1989 SPIRAL, Caen, France delivering IF beams since 1984 delivering ISOL beams since 2001 REX-ISOLDE, Geneva, Switzerland delivering ISOL beams since 2001 GSI, Darmstadt, Germany delivering IF beams since 1990 MAFF, Munich, Germany under construction SPES, Legnaro, Italy project

12 First generation Radioactive Beam Projects LocationStartDriverPost- accelerator Upgrade planned CRC, Louvain-la- Neuve, Belgium 1989cyclotron p, 30 MeV, 200  A cyclotrons K = 44 and 110 SPIRAL, GANIL, Caen, France 20012 cyclotrons heavy ions up to 95 MeV/u 6 kW cyclotron K = 265 2 - 25 MeV/u new driver REX-ISOLDE, CERN, Geneva, Switzerland 2001PS booster p, 1.4 GeV, 2  A linac 0.8 - 2.2 MeV/u energy upgrade 4.3 MeV/u HRIBF, Oak Ridge, USA 1998cyclotron p, d, , 50 -100 MeV 10 - 20  A 25 MV tandem ISAC, TRIUMF, Vancoucer, Canada 2000synchrotron p, 500 MeV, 100  A linac 1.5 MeV/u energy upgrade 6.5 MeV/u

13 CYCLONE 110 Louvain-la-Neuve: focus on nuclear astrophysics 30 MeV p + 13 C => 13 N + n 13 N + p => 14 O +  Hot CNO cycle

14 Louvain-la-Neuve: nuclear physics c.m.c.m. d  /d  (mb/sr) 4 He( 6 He, 6 He) 4 He E c.m. = 11.6 MeV 6 He + 238 U 4 He + 238 U 6 Li + 238 U 4 He + 238 U 6 He + 238 U fusion-fission 6 He + 4 He elastic scattering J. L. Sida et al. PRL84 (2000) 2342R. Raabe et al. PLB458 (1999) 1

15 E (keV) Neutron pick-up of 30 Mg (T 1/2 =0.3 s) 30 Mg + 2 H  31 Mg + 1 H 10.000 atoms/sec 2.23 MeV/u 31 Mg 16 N (from beam contamination) REX-ISOLDE - CERN + MINIBALL array 76 Kr + 208 Pb 500.000 atoms/sec 2.6 - 4.4 MeV/u Coulomb excitation of 76 Kr (T 1/2 =14.6 h) SPIRAL - GANIL + EXOGAM array First results from SPIRAL and REX-ISOLDE

16 Mass measurements rp-process Super-allowed Fermi  -decay 74 Rb (T 1/2 =65 ms)  m = 4.5 keV (  m/m = 6 10 -8 )

17 Rare Isotope Accelerator: RIA RI-Beam factory: RIKEN GSI European Separator On-Line Radioactive Nuclear Beam Facility Experimental aim of the second generation facilities  figure of merit for the study of exotic nuclei x > 1000 Technological challenge  increase the global selectivity and sensitivity  increase the secondary beam intensity The new generation of Radioactive Beam Facilities

18 RIA expected yields A=78 79 80 77 76 78 Ni RIA expected yields 78 Ni: 70 at/s 100 Sn: 8 at/s Intensity and Selectivity

19  secondary =  production  N target  beam x  release – transport x  ionization x  transport - storage - post-acceleration I secondary /I total Intensity Purity Event rate I counts (reaction) = I secondary  branching  reaction N secondary target x  spectrometer x  detector I counts (decay) = I secondary  branching x  detector Peak to background R resolving power (suppression of background, identification of events) Figures of Merit (in first approximation)

20 78 Ni @ 3-5 MeV/u E x (2 + -0 + ) = 4 MeV B(E2)=500 e 2 fm 4  (Coulex)  100 mb N secondatytarget (58 Ni) = 3mg/cm2 N target ( 238 U,  = 100 pbarn) = 100 g/cm 2 Countrate estimate“Ideal (realistic?)” I counts (2 + -0 + ) (minimum) 10 cts/day   x  spectrometer 10 % I secondary ( 78 Ni)375 at/s  post-accelerator 50 %  ionization 50 %  release 50 % I beam (p, 1 GeV)19  A needed!! needs pure conditions modest intensity! An example: Coulomb excitation of 78 Ni at an ISOL system

21 “Ideal (realistic?)”NowGain factor I beam (p, 1 GeV)100  A direct (5000  A indirect) 10  A10 (> 500)  release 50 %0.1 %500  ionization 50 %10 %5  post-accelerator 50 %10 %5 I secondary ( 78 Ni)2000 at/s58 at/h 10 5   x  spectrometer 10 %1 %10  10 4 beam purity? 78 Ni produced at an ISOL system: rates

22 Now (1) ProposedGain factor I beam ( 238 U, 1 GeV/u)10 10 at/s1 10 12 at/s100  in-flight separator 3 - 6 % (  5%)30 – 60 % (  50%) (2) 10 I secondary ( 78 Ni)35 at/h10 at/s (3) 1000 (1) based on the first identification of 78 Ni C. Engelmann et al., Z. Phys. A352 (1995) 351 * I( 238 U) = 2 10 7 at/s *  in-flight separator = 1.6% * I( 78 Ni) = 0.5 at/day (2) GSI: Conceptual Design Report (3) RIA: I( 238 U) = 2 10 13 at/s @ 400 MeV/u I( 78 Ni) = 70 at/s ! ! ! N sec. target (IF) = 100 x (ISOL) but Low energy background and Doppler correction 78 Ni produced at an IF system: rates

23 Stopping of fragments in a gas cell (I) 100 cm 30 cm 0.5 – 1 bar Delay (ms) 1000 100 10 1 0.1 Argon Helium 0.01 0.1 1 10 E/N (10 -17 V. cm 2 ) G. Savard @ ANL Heavy-Ion Beam High-power target Range bunching Gas catcher Low energy beam range bunching stopping of reaction products in buffer gas electrical fields (AC and DC) remove electrons (neutralization) drag ions towards exit hole

24 1 2 3 4 5 heavy-ion ion guide fission ion guide Shiptrap RADRIS RIA M. Huyse,- Nucl. Instr. Meth. B what is the intensity limit? Stopping of fragments in a gas cell (II) He (1 atm) laser ionization after the plasma has decayed increased selectivity! Fragmentation G. Savard,- @ ANL and GSI G. Bollen,- @ MSU M. Wada,- @ RIKEN

25 Laser ion source at ISOLDE Energy (eV) 0 4 efficiency up to 10 % selectivity: depending on the implementation applicable for many elements (universal) high-temperature cavity laser + + + + + photo ions surface ions Laser Ion Source

26  -decay of 78 Cu at ISOLDE 78 Ni  0.2 s 78 Cu 0.34 s 78 Zn 1.5 s 78 Ga 5.5 s 78 Ge 88 m 78 As 1.5 h 78 Se N=50 Z=28 1  10 2  10 4  relative J.M. Daugas et al. Phys. Lett. B476 (2000) 213 0+0+ (2 + ) (8 + ) (6 + ) (4 + ) 78 Zn 908 keV 890 keV 730 keV p(1 GeV) + Ta-rod  neutron neutron + 238 U  78 Cu  no deep spallation The problem of selectivity: an example from ISOL

27 laser ionization of Cu isotopes  -gated gamma decay spectrum 600 700 800 900 1000 Energy (keV) 10 5 10 4 10 3 78 Ga 78 Cu 730 keV 890 keV laser on laser off 700 800 900 Energy (keV) Production rates: J.M. Daugas et al. Phys. Lett. B476 (2000) 213 0+0+ (2 + ) (8 + ) (6 + ) (4 + ) 78 Zn 908 keV 890 keV 730 keV The decay of 78 Cu

28 (1 + ) (3 - ) (6 - ) 70 Cu 4 1 2929 6.6(2) s 33(2) s 44.5(2) s 0 100 200 (keV)  V. Fedoseev, U. Koster, J. Van Roosbroeck et al., ISOLDE laser ionization in a hot cavity different hyperfine splitting for the different isomers enhancement of specific isomers increase selectivity of laser ion sources reduce power, pressure and Doppler broadening Production of isomeric beams: 70 Cu m1,m2,g

29 production ionization purification measurement: identification reaction / decay / g.s. properties... acceleration / deceleration / storage high-power targets geometrical optimization radiation safety laser ionization (selectivity, isomeric beams) release optimization, chemistry gas cell (space-charge limit, laser re-ionization) charge-state breeding vs. 1 + acceleration RF-coolers, traps (intensity limit, high- resolution mass separator)  -identification fast tracking of particles high-power accelerators Outlook


Download ppt "Radioactive Ion Beams: where are we now experimentally? M. Huyse K.U. Leuven Moriond, March 2003 Opening page."

Similar presentations


Ads by Google