280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,

Slides:



Advertisements
Similar presentations
The state-of-art based GaAs HBT
Advertisements

High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Xxx Miguel Urteaga A Ph. D. thesis proposal, July 16 th, 2002.
Ultra High Speed InP Heterojunction Bipolar Transistors Mattias Dahlström Trouble is my business, (Raymond Chandler)
GaN based Heterojunction Bipolar Transistors
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Device Research Conference 2011
High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell.
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan, D. Scott, T. Mathew, Y. Wei, M. Dahlstrom, S. Lee, M. Rodwell. Department.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes , fax 2003.
1999 IEEE Symposium on Indium Phosphide & Related Materials
Single-stage G-band HBT Amplifier with 6.3 dB Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department of Electrical.
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
Indium Phosphide Bipolar Integrated Circuits: 40 GHz and beyond Mark Rodwell University of California, Santa Barbara ,
InAs Inserted HEMT 연성진.
Multi-stage G-band ( GHz) InP HBT Amplifiers
InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
Transistor and Circuit Design for GHz ICs , fax Mark Rodwell University of California, Santa Barbara.
University of California, Santa Barbara
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE), Mark A. Wistey Now at.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
C. Kadow, J.-U. Bae, M. Dahlstrom, M. Rodwell, A. C. Gossard *University of California, Santa Barbara G. Nagy, J. Bergman, B. Brar, G. Sullivan Rockwell.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
IEEE Bipolar/BiCMOS Circuits and Technology Meeting Zach Griffith, Mattias Dahlström, and Mark J.W. Rodwell Department of Electrical and Computer Engineering.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
Indium Phosphide and Related Materials
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Contents GaAs HEMTs overview RF (Radio Frequency) characteristics
Introduction to GaAs HBT and current technologies
20th IPRM, MAY 2008, Versallies-France
Lower Limits To Specific Contact Resistivity
Device Research Conference, June 19, 2012
High Transconductance Surface Channel In0. 53Ga0
Heterojunction Bipolar Transistor
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Presentation transcript:

280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard, Mark Rodwell University of California at Santa Barbara This work was supported by the DARPA TFAST program and by the Office of Naval Research (ONR) * RF Micro Devices, Infrastructure Product Line, GaN Technology Charlotte, North Carolina 28269, Tel: (704) ;

Motivation for Regrown-Emitter HBT: InP vs. Si/SiGe Advantages of InP ~20:1 lower base sheet resistance ~5:1 higher base electron diffusivity ~3:1 higher collector electron velocity ~4:1 higher breakdown at same f  Disadvantages of InP Production devices: large ~ 0.7 µm emitters High emitter resistance: scaling limit Large excess collector capacitance Non-planar device → low IC yield Low integration scales The advantages of InP-based HBTs lie in the material system. The disadvantages lie in the device structure and fabrication technology.

Emitter Resistance is a Key HBT Scaling Limit

Why Emitter Regrowth ? Target Benefits: Eliminate emitter undercut etch Eliminate base-emitter metal liftoff Flared emitter structure → large contact, small junction → low emitter access resistance Thick, ~2*10 20 /cm 3 -doped extrinsic base → low resistance: 250 Ohms/square → tolerant of contact metal migration Thin, ~3*10 19 /cm 3 -doped intrinsic base → low transit time → high current gain (less Auger) Passivated base-emitter junction → reliability Polycrystalline InAs has low resistivity, can play same role in InP as the polysilicon extrinsic emitter in Si/SiGe

Regrown emitter HBT RF fabrication process

0.3 um Intrinsic emitter 0.3 x 4 um 2 regrown-emitter InP DHBT extrinsic base base contact collector contact extrinsic emitter polyimide emitter collector base plug

Initial DC/RF results using CSL (graded) InAlAs emitter * Y. Wei, D. Scott, et al., IEEE EDL, May 2004, pp Peak f τ = 162 GHz, f max = 140 GHz Common-emitter current gain, h 21 = 20 η C = 1.2, η B = 2.2

First DC/RF results with improved surface & InP emitter Peak f τ = 183 GHz, f max = 165 GHz Common-emitter current gain, h21 ~17 Abrupt base-emitter junction and InP emitter * D. Scott, Y. Wei, et al., IEEE EDL, June 2004, pp.360~362.

Breaks in Emitter Growth Increase Emitter Resistance Narrowing or breakage of emitter regrowth - due to facet-dependent growth - due to high surface mobility of indium intrinsic emitter extrinsic emitter SiN

Improving emitter film continuity intrinsic emitter intrinsic emitter Suppress indium migration on the regrowth facets by: orienting abrupt InP emitter 60 o off [110] inserting alloy-graded InGa X As 1-X layers between the InP emitter and InAs cap [110] [100] extrinsic emitter extrinsic emitter Si x N y

HBT layer structure Layer Material Doping (cm -3 ) Thickness (Å) Emitter cap InAs 3e19 Si 800 Cap grade InGa X As 1-X 3e19 Si 500 N+ Emitter InP 3e19 Si 800 N- Emitter InP 8e17 Si 100 N-- Emitter InP 3e17 Si 300 Extrinsic base InGaAs 1~2e20 C 500 Etch stop InP 4e19 Be 20 Intrinsic base InGaAs 4e19 C 400 Set-back InGaAs 2e16 Si 200 Grade InGaAlAs 2e16 Si 240 Delta doping InP 3e18 Si 30 Collector InP 2e16 Si 1030

Regrown-Emitter InP DHBT with 0.3  4 µm 2 junction: 280 GHz f T V CE,sat < 0.9 V at J E =11mA/µm 2 Peak AC current gain=30 Collector breakdown voltage V CEO =5 V Peak f τ = 280 GHz, f max = 148 GHz Emitter access resistance R ex =11 Ohm, R ex A e =13 Ohm-um 2 η B =3.2 η C =1.2

Base Dopant Passivation by Hydrogen Degrades Performance Hydrogen passivation of carbon base doping increases base sheet resistance source of Hydrogen: PECVD-deposited Si x N y Solution: process uses hydrogen-free sputtered Si x N y for surfaces present process still uses PECVD Si x N y for sidewalls need to also used sputtered Si x N y for sidewalls

Hydrogen-Free Sputter-Deposited SiN Sidewalls substrate WW S. SiN Sputter-deposited SiN process development: 4 inch Si wafer uniformity testing refractive index measurement using ellipsometer: RI=2.06 BHF wet etching rate testing: ~8 Å/min - Stoichiometry controllable by heating, gas ratio and pressure

Summary InP HBT with emitter regrowth wide emitter contact, submicron emitter junction→ potential for reduced R ex junction formation by regrowth, not mesa etching thick extrinsic base for reduce base resistance Performance still limited by immature process technology breaks in emitter regrowth→ increased R ex hydrogen passivation from sputtered SiN sidewalls → increased R bb Present results: 0.3 um x 4 um regrown-emitter InP HBT 280 GHz f τ, 148 GHz f max, peak AC current gain=30 V CE,sat < 0.9 V at J E =11mA/µm 2 r ex = R ex A e =13 Ohm-um 2 Remaining improvements needed for 400-GHz-class device: hydrogen-free sputtered SiN sidewall further improvements in regrown emitter film continuity