Spin Torque Transfer Technology

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
AP STUDY SESSION 2.
1
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 4 Computing Platforms.
Sequential Logic Design
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
1 Giant Magneto-Resistive Switches & Spin Torque Transfer Switches friendly critic analysis ERD "Beyond CMOS" Technology Maturity Evaluation Workshop San.
David Burdett May 11, 2004 Package Binding for WS CDL.
FIGURE 8.1 Process and controller.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
CALENDAR.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
The 5S numbers game..
Break Time Remaining 10:00.
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
Advance Nano Device Lab. Fundamentals of Modern VLSI Devices 2 nd Edition Yuan Taur and Tak H.Ning 0 Ch9. Memory Devices.
PP Test Review Sections 6-1 to 6-6
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
Chapter 3 Logic Gates.
Figure 3–1 Standard logic symbols for the inverter (ANSI/IEEE Std
Cost-Volume-Profit Relationships
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Operating Systems Operating Systems - Winter 2010 Chapter 3 – Input/Output Vrije Universiteit Amsterdam.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Before Between After.
Subtraction: Adding UP
1 Lab 17-1 ONLINE LESSON. 2 If viewing this lesson in Powerpoint Use down or up arrows to navigate.
: 3 00.
5 minutes.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Analyzing Genes and Genomes
Essential Cell Biology
FIGURE 12-1 Op-amp symbols and packages.
Converting a Fraction to %
Resistência dos Materiais, 5ª ed.
Clock will move after 1 minute
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Copyright Tim Morris/St Stephen's School
1.step PMIT start + initial project data input Concept Concept.
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
Spin Torque Transfer Logic Proponent; Jim Allen UCSB Friendly Critic: Eli Yablonovitch, Berkeley Reporter: George Bourianoff, Intel.
Magnetoresistive Random Access Memory (MRAM)
Magnetoresistive Random Access Memory (MRAM)
EE201C: Winter 2012 Introduction to Spintronics: Modeling and Circuit Design Richard Dorrance Yuta Toriyama.
Presentation transcript:

Spin Torque Transfer Technology S. James Allen UC Santa Barbara Science Technology Spin Torque Transfer – RAM, STT-RAM Spin Torque Transfer Nano-oscillators Spin logic devices

Spin Torque Transfer Technology With input from Mark Rodwell UC Santa Barbara Bob Buhrman Cornell Stu Wolf U. Virginia H. Ohno Tohoku University Nick Rizzo Free Scale Yiming Huai Grandis Bill Rippard NIST Steve Russek NIST Eli Yablonovitch UC Berkeley Ajey Jacob Intel

Spin Torque Transfer Technology From R. A. Buhrman, “Spin Torque Effects in Magnetic Nanostructures”, Spintech IV, 2007 Science Technology Spin Torque Transfer – RAM, STT-RAM Spin Torque Transfer Nano-oscillators Spin logic devices

Spin Torque Transfer: Science J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989). Heisenberg exchange Giant magneto resistance Spin transfer torque

Spin Torque Transfer: Science J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989). Non-magnetic Ferromagnet Ef , 1-band Ferromagnet Heisenberg exchange Giant magneto resistance Spin transfer torque

Spin Torque Transfer: Science J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989). Ferromagnet Ef , 1-band Ferromagnet Ferromagnetic Ferromagnetic Anti-ferromagnetic Anti-ferromagnetic Heisenberg exchange

Spin Torque Transfer: Science J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989). Ef , 1-band P = 1, ideal, perfect spin valve Giant magneto resistance

H. Ohno, “Spintronics” Seminar, UCSB May, 2008

H. Ohno, “Spintronics” Seminar, UCSB May, 2008 ideal, perfect spin valve

H. Ohno, “Spintronics” Seminar, UCSB May, 2008 M. Hosomi, et al., “A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram”, Electron Devices Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459-462. Free Fixed SyF P = 1, ideal, perfect spin valve

Spin Torque Transfer: Science J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989). q Free Spin transfer torque

Spin Torque Transfer: Science J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989). Fixed q Free Spin transfer torque

Spin Torque Transfer: Science J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989). Precession Switching Damping Fixed q Free Spin transfer torque

Spin Torque Transfer Technology From R. A. Buhrman, “Spin Torque Effects in Magnetic Nanostructures”, Spintech IV, 2007 Science Technology Spin Torque Transfer – RAM, STT-RAM Spin Torque Transfer Nano-oscillators Spin logic devices

GMR and STT --- STT-RAM Spin transfer torque Precession Switching J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989). Precession Switching Damping Fixed q Free Spin transfer torque

GMR and STT --- STT-RAM ~ 200 mA T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki, Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno, “2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109 (2008). ~ 200 mA

Conventional MRAM (toggle) and Spin Torque MRAM Spin polarized current produces torque to reverse free layer. H field produces torque to reverse free layer. Need Isw ≈ 40 mA/bit for 0.4 um x 1.0 um. Isw constant for smaller bits. Isw < 1 mA/bit for 0.06 mm x 0.12 mm bit. Isw reduces as bit scales smaller.

STT-RAM 2005 Free Fixed SyF M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, H. Kano, “A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram”, Electron Devices Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459-462.

STT-RAM 2005 CMOS driver 100 mA/100 nm M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, H. Kano, “A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram”, Electron Devices Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459-462. CMOS driver 100 mA/100 nm S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).

STT-RAM 2005 Read ~ 0.2 V < write! CMOS sensing > 0.2 V M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, H. Kano, “A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram”, Electron Devices Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459-462. CMOS sensing > 0.2 V S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).

STT-RAM 2005 Sony 4 kb M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, H. Kano, “A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram”, Electron Devices Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459-462. S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).

STT-RAM 2007 Grandis, Inc. 115 x 180 nm2 Courtesy of Yiming Huai STT-RAM cell with integrated CMOS transistor. The area of a single-level STT-RAM cell can be as small as 6 F2. Y. Huai, Z. Diao, Y.Ding, A. Panchula, S. Wang, Z. Li, D. Apalkov, X. Luo, H. Nagai, A. Driskill-Smith, and E. Chen, “Spin Transfer Torque RAM (STT-RAM) Technology”, 2007 Inter. Conf. Solid State Devices and Materials, Tsukuba, 2007, pp. 742-743. S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007). Courtesy of Yiming Huai

STT-RAM 2007 Hitachi Courtesy of Hideo Ohno T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki, Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno, “2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109 (2008). S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007). Courtesy of Hideo Ohno

GMR and STT --- STT-RAM T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki, Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno, “2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109 (2008).

STT-RAM Projections vs State-of-the-art A.Driskill-Smith, Y. Huai, “STT-RAM – A New Spin on Universal Memory”, Future Fab, 23, 28 Hitachi, 2007 Yes 1.6 x 1.6 mm TMR 100 x 50 nm2 (60) 40 ns 100 ns > 109 40 pJ/100ns None 1.8 V T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki, Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno, “2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109 (2008).

STT-RAM Projections vs State-of-the-art Nick Rizzo, Freescale   Toggle MRAM (180 nm) (90 nm)* DRAM (90 nm)+ SRAM FLASH (32 nm)+ ST MRAM ST (32 nm)* cell size (mm2) 1.25 0.25 0.05 1.3 0.06 0.01 Read time 35 ns 10 ns 1.1 ns 10 - 50 ns 1 ns Program time 5 ns 0.1-100 ms Program energy/bit 150 pJ 120 pJ 5 pJ Needs refresh 5 pJ 30 – 120 nJ 10 nJ 0.4 pJ 0.04 pJ Endurance > 1015 > 1015 read, > 106 write >1015 Non-volatility YES NO Hitachi, 2007 1.6 x 1.6 mm TMR 100 x 50 nm2 (60) 40 ns 100 ns 40 pJ > 109 Yes T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki, Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno, “2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109 (2008). * 90nm, 32nm MRAM values are projected + These values are from the ITRS roadmap

Information Requested (2/2) STT - RAM Current state-of-the-art using the provided metrics as a guide (Appendix 2 of request for white papers) CMOS integrated STT-RAM demonstrated. 2Mb Key scientific and technological issues remaining to accept the technology for manufacture. Lower critical currents and larger TMR ratio. Quality of the tunnel junction is critical. Technology roadmap outlining a 5-15 year develop path leading to manufacture in 5-10 years. Replace MRAM. Embedded memory in logic applications. Longer term – universal memory.

Spin Transfer Torque Nano-oscillator J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B, 39 6995 (1989). Precession Switching Damping Fixed q Free Spin transfer torque

Spin Transfer Torque Nano-oscillator S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman and D. C. Ralph, “Microwave oscillations of a nanomagnet driven by a spin-polarized current”, Nature, 425,380 (2003).“ 30 nmPt 2 nm Cu/ 3 nm Co/ 10 nm Cu/ 40 nmCo/ 80 nm Cu/ ~ 0.1 nW measured H 130 x 70 nm2

Spin Transfer Torque Nano-oscillator S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman and D. C. Ralph, “Microwave oscillations of a nanomagnet driven by a spin-polarized current”, Nature, 425,380 (2003).“ 30 nmPt 2 nm Cu/ 3 nm Co/ 10 nm Cu/ 40 nmCo/ 80 nm Cu/ ~ 0.1 nW measured H 130 x 70 nm2 Key element: A skew magnetic field !

Spin Transfer Torque Nano-oscillator ~ 0.1 nW measured 30 nmPt 2 nm Cu/ 3 nm Co/ 10 nm Cu/ 40 nmCo/ 80 nm Cu/ H 130 x 70 nm2 ~ 0.2 nW estimated max.

Spin Transfer Torque Nano-oscillator: Injection Locking W. H. Rippard, M. R. Pufall, S. Kaka, T. J. Silva, S. E. Russek, J. A. Katine, “Injection Locking and Phase Control of Spin Transfer Nano-oscillators”, Phys. Rev. Lett., 95, 067203 (2005). 1 nm Au 1 nm Cu/ 5 nm NiFe/ 4 nm Cu/ 20 nm CoFe/ 50 nmCu/ 5 nm Ta/ 50 x 50 nm2 0.56 Tesla ~ 30 pW

Spin Transfer Torque Nano-oscillator: Frequency Modulation M. R. Pufall, W. H. Rippard, S. Kaka, T. J. Silva, and S. E. Russek “Frequency modulation of spin-transfer oscillators” Appl. Phys. Lett. 86, 082506 (2005). ~ 250 pW

Spin Transfer Torque Nano-oscillator: Phase Locking S. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek and J.A. Katine, “Mutual phase-locking of microwave spin torque nano-oscillators” Nature, 437, 389 (2005). ~ 2 pW

Spin Transfer Torque Nano-oscillator: B=0.0 T. Devoldera, A. Meftah, K. Ito, J. A. Katine, P. Crozat and C. Chappert, “Spin transfer oscillators emitting microwave in zero applied magnetic field”, J. Appl. Phys. 101, 063916 2007. < 1.0 pW Fixed layer Free

Spin Transfer Torque Nano-oscillator: Power issues? Some measures: Cell phone – 900 MHz, 1.8GHz, ~ 500 mW Wireless access points – 2.4 GHz, 5.0 GHz, ~ 25 mW Automotive radar 24 GHz, 100 GHz ~ 10 mW State of the art STT nano-oscillators External magnetic field, ~ nW, efficiency 10-6

Spin Transfer Torque Nano-oscillator 30 nmPt 2 nm Cu/ 3 nm Co/ 10 nm Cu/ 40 nmCo/ 80 nm Cu/ MgO tunnel barrier ~ 1 mW estimated

Spin Transfer Torque Nano-oscillator: Power issues? Some measures: Cell phone – 900 MHz, 1.8GHz, ~ 500 mW Wireless access points – 2.4 GHz, 5.0 GHz, ~ 25 mW Automotive radar 24 GHz, 100 GHz ~ 10 mW State of the art STT nano-oscillators External magnetic field, ~ nW, efficiency ~ 10-6 Projection MTJ based STT nano-oscillators ~ mW, efficiency ~ 10-2 ? Power combining ? But touch base with the Cornell, NIST, UVa collaboration

Information Requested (2/2) STT Nano-oscillators Current state-of-the-art using the provided metrics as a guide (Appendix 2 of request for white papers) Nano-oscillators at the nano-picowatt level with spin valve structures, in external magnetic fields. Existence proof of approach to external magnetic field free sustained oscillation. Phase locking, frequency modulation, injection locking demonstrated. Key scientific and technological issues remaining to accept the technology for manufacture. Increased power. Use of magnetic tunnel junctions. Power combining. Technology roadmap outlining a 5-15 year develop path leading to manufacture in 5-10 years. Needs to be guided by potential applications.

“MRAM” --- Spin Logic Device Current controlled Non-volatile “Leaky” switch, Mark Rodwell, UC Santa Barbara Eli Yablonovitch, UC Berkeley I “transpinnor” source Ikeda et. al., Japanese Journal of Applied Physics, Vol. 44, No 48, pp. L1442-L1445 drain

Two views - Spin Logic Eli Yablonovitch Mark Rodwell Output Power = 1.6*10-8 W Total Power = 2.5*10-8 W Efficiency=65% Eli Yablonovitch 5μA output 5μA input 500Ω or 2.275kΩ +V +3mV -V -3mV Mark Rodwell Iss Iinput Iinput Iss Ioutput Ioutput Inverter Complementary Transpinnor logic Three state circuits memory and logic clocked logic “0” static dissipation Problems: On/Off ratio is only about 5:1 Still takes too many Amps to switch

“MRAM” --- Spin Logic Device Current controlled Non-volatile “Leaky” switch, Mark Rodwell, UC Santa Barbara Eli Yablonovitch, UC Berkeley I “transpinnor” source Ikeda et. al., Japanese Journal of Applied Physics, Vol. 44, No 48, pp. L1442-L1445 drain

GMR and STT --- Spin Logic Device? Can we control GMR by Magnetostatically coupling to a STT switch ?? Mark Rodwell, UC Santa Barbara Eli Yablonovitch, UC Berkeley I “transpinnor” source drain

GMR and STT --- Spin Logic Device? Can we control GMR by Magnetostatically coupling to a STT switch ?? O. Ozatay,a_ N. C. Emley, P. M. Braganca, A. G. F. Garcia, G. D. Fuchs, I. N. Krivorotov,R. A. Buhrman, and D. C. Ralph, “Spin transfer by nonuniform current injection into a nanomagnet”, Appl. Phys. Lett., 88, 202502 (2006).

GMR and STT --- Spin Logic Device? Input Current driven Clocked logic Inherent memory, ISS → 0, no change in input of next stage Output ISS ISS M. Rodwell Inverter Input Output

GMR and STT --- Spin Logic Device? M. Rodwell NAND Current controlled Clocked logic 3-state, nonvolatile Cell 100F2 Energy per bit ~ 4* STT-RAM Switching speed slower than STT-RAM

Information Requested (2/2) GMR-STT Spin logic devices Current state-of-the-art using the provided metrics as a guide (Appendix 2 of request for white papers) “Straw man” concepts, synergistic with STT-RAM developments Key scientific and technological issues remaining to accept the technology for manufacture. Demonstration of magneto-static proximity coupling of GMR device and STT switch Technology roadmap outlining a 5-15 year develop path leading to manufacture in 5-10 years. Premature

Spin Torque Transfer Technology A perspective: STT-RAM will be developed for memory embedded in logic applications. STT Nano-oscillators development needs to guided by potential application. Research on potential STT Logic will be leveraged by developments in STT-RAM