Computation, Quantum Theory, and You Scott Aaronson, UC Berkeley Qualifying Exam May 13, 2002.

Slides:



Advertisements
Similar presentations
Quantum Computing: Whats It Good For? Scott Aaronson Computer Science Department, UC Berkeley January 10,
Advertisements

The Polynomial Method In Quantum and Classical Computing Scott Aaronson (MIT) OPEN PROBLEM.
Quantum Lower Bounds You probably Havent Seen Before (which doesnt imply that you dont know OF them) Scott Aaronson, UC Berkeley 9/24/2002.
Quantum Lower Bound for the Collision Problem Scott Aaronson 1/10/2002 quant-ph/ I was born at the Big Bang. Cool! We have the same birthday.
The Complexity of Sampling Histories Scott Aaronson, UC Berkeley August 5, 2003.
Quantum Lower Bounds The Polynomial and Adversary Methods Scott Aaronson September 14, 2001 Prelim Exam Talk.
Quantum t-designs: t-wise independence in the quantum world Andris Ambainis, Joseph Emerson IQC, University of Waterloo.
Quantum Versus Classical Proofs and Advice Scott Aaronson Waterloo MIT Greg Kuperberg UC Davis | x {0,1} n ?
Quantum Software Copy-Protection Scott Aaronson (MIT) |
Hawking Quantum Wares at the Classical Complexity Bazaar Scott Aaronson (MIT)
The Future (and Past) of Quantum Lower Bounds by Polynomials Scott Aaronson UC Berkeley.
SPEED LIMIT n Quantum Lower Bounds Scott Aaronson (UC Berkeley) August 29, 2002.
Lower Bounds for Local Search by Quantum Arguments Scott Aaronson.
Quantum Computing and Dynamical Quantum Models ( quant-ph/ ) Scott Aaronson, UC Berkeley QC Seminar May 14, 2002.
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
Quantum Search of Spatial Regions Scott Aaronson (UC Berkeley) Joint work with Andris Ambainis (U. Latvia)
Quantum Double Feature Scott Aaronson (MIT) The Learnability of Quantum States Quantum Software Copy-Protection.
Lower Bounds for Local Search by Quantum Arguments Scott Aaronson (UC Berkeley) August 14, 2003.
An Invitation to Quantum Complexity Theory The Study of What We Cant Do With Computers We Dont Have Scott Aaronson (MIT) QIP08, New Delhi BQP NP- complete.
A Full Characterization of Quantum Advice Scott Aaronson Andrew Drucker.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
How to Solve Longstanding Open Problems In Quantum Computing Using Only Fourier Analysis Scott Aaronson (MIT) For those who hate quantum: The open problems.
Scott Aaronson BQP und PH A tale of two strong-willed complexity classes… A 16-year-old quest to find an oracle that separates them… A solution at lastbut.
Scott Aaronson Institut pour l'Étude Avançée Le Principe de la Postselection.
Arthur, Merlin, and Black-Box Groups in Quantum Computing Scott Aaronson (MIT) Or, How Laci Did Quantum Stuff Without Knowing It.
The Equivalence of Sampling and Searching Scott Aaronson MIT.
The Collision Lower Bound After 12 Years Scott Aaronson (MIT) Lower bound for a collision problem.
The Computational Complexity of Linear Optics Scott Aaronson and Alex Arkhipov MIT vs.
Scott Aaronson (MIT) BQP and PH A tale of two strong-willed complexity classes… A 16-year-old quest to find an oracle that separates them… A solution at.
Solving Hard Problems With Light Scott Aaronson (Assoc. Prof., EECS) Joint work with Alex Arkhipov vs.
Scott Aaronson (MIT) Based on joint work with John Watrous (U. Waterloo) BQP PSPACE Quantum Computing With Closed Timelike Curves.
Comparative Succinctness of KR Formalisms Paolo Liberatore.
Shortest Vector In A Lattice is NP-Hard to approximate
Efficient Discrete-Time Simulations of Continuous- Time Quantum Query Algorithms QIP 2009 January 14, 2009 Santa Fe, NM Rolando D. Somma Joint work with.
Scott Aaronson (MIT) Forrelation A problem admitting enormous quantum speedup, which I and others have studied under various names over the years, which.
Department of Computer Science & Engineering University of Washington
1 Quantum Computing: What’s It Good For? Scott Aaronson Computer Science Department, UC Berkeley January 10,  John.
Anuj Dawar.
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
Quantum Algorithms II Andrew C. Yao Tsinghua University & Chinese U. of Hong Kong.
Scott Aaronson (MIT) Andris Ambainis (U. of Latvia) Forrelation: A Problem that Optimally Separates Quantum from Classical Computing H H H H H H f |0 
Computer Algorithms Lecture 11 Sorting in Linear Time Ch. 8
One Complexity Theorist’s View of Quantum Computing Lance Fortnow NEC Research Institute.
1 Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 / QNC 3129 Lectures.
New quantum lower bound method, with applications to direct product theorems Andris Ambainis, U. Waterloo Robert Spalek, CWI, Amsterdam Ronald de Wolf,
October 1 & 3, Introduction to Quantum Computing Lecture 2 of 2 Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum.
Quantum Computing MAS 725 Hartmut Klauck NTU TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A.
Algorithms Artur Ekert. Our golden sequence H H Circuit complexity n QUBITS B A A B B B B A # of gates (n) = size of the circuit (n) # of parallel units.
Short course on quantum computing Andris Ambainis University of Latvia.
Quantum Factoring Michele Mosca The Fifth Canadian Summer School on Quantum Information August 3, 2005.
Quantum Computing MAS 725 Hartmut Klauck NTU
Quantum Algorithms & Complexity
Quantum algorithms vs. polynomials and the maximum quantum-classical gap in the query model.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Lecture.
Quantum Computing MAS 725 Hartmut Klauck NTU
On the Complexity of Manipulating Quantum Boolean Circuits Vincent Liew.
Forrelation: A Problem that Optimally Separates Quantum from Classical Computing.
Verification of BosonSampling Devices Scott Aaronson (MIT) Talk at Simons Institute, February 28, 2014.
Quantum algorithms are at most polynomially faster for any symmetric function Andris Ambainis University of Latvia.
Quantum Computation Stephen Jordan. Church-Turing Thesis ● Weak Form: Anything we would regard as “computable” can be computed by a Turing machine. ●
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lectures
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
On the Size of Pairing-based Non-interactive Arguments
Scott Aaronson (MIT) QIP08, New Delhi
Circuit Lower Bounds A combinatorial approach to P vs NP
Quantum Computing: What’s It Good For?
Oracle Separation of BQP and PH
Oracle Separation of BQP and PH
Quantum Lower Bounds Via Laurent Polynomials
Presentation transcript:

Computation, Quantum Theory, and You Scott Aaronson, UC Berkeley Qualifying Exam May 13, 2002

Talk Outline 1.Sermon 2.Quantum Computing Overview 3.Collision Lower Bound 4.Dynamical Models 5.Current and Future Work

1. Sermon

The Computer Scientists Idea of Physics + details

What Does Our World Have That Conways Doesnt? 3 or more spatial dimensions Continuity? Relativistic covariance Quantum theory And more? Quantum theory

My Own View… What we experience Quantum theory

Research Goal Prove complexity results, focusing on quantum computing, that are motivated by this gap between physics and what we experience. (Disclaimer: I will not bridge the gap in my thesis.)

2. Quantum Computing

Some Milestones

The Quantum Model State of computer: superposition over binary strings To each string Y, associate complex amplitude Y Y | Y | 2 = 1 On measuring, see Y with probability | Y | 2 Dirac ket notation: State written | = Y Y |Y Each |Y is called a basis state

Unitary Evolution Quantum state changes by multiplying amplitude vector with unitary matrix: | (t+1) = U| (t) U is unitary iff U -1 =U, conjugate transpose (Linear transformation that preserves norm=1) Example: Circuit model: U must be efficiently computable Black-box model: No such restriction 1/ 2 -1/ 2 1/ 2 ( |0 + |1 )/ 2 = |1

Quantum Query Model State after t queries: : workbits i: index to query z: output Query: |,i,z | x i,i,z Arbitrary unitaries that dont depend on X By end:

3. Collision Lower Bound

Collision Problem Given Promised: (1) X is one-to-one (permutation) or (2) X is two-to-one Problem: Decide which w.h.p., using few queries to the x i Randomized alg: ( n)

Result Any quantum algorithm for the collision problem uses (n 1/5 ) queries (A, STOC2002) Previously no lower bound better than (1). Open since 1997 Shi improved to (n 1/4 ) (n 1/3 ) when |range| >> n

Implications Oracle A for which SZK A BQP A –SZK: Statistical Zero Knowledge No trivial polytime quantum algorithms for –graph isomorphism –nonabelian hidden subgroup –breaking cryptographic hash functions

Brassard-Høyer-Tapp (1997) (n 1/3 ) quantum alg for collision problem n 1/3 x i s, queried classically, sorted for fast lookup Grovers algorithm over n 2/3 x i s Do I collide with any of the pink x i s?

Previous Lower Bound Techniques Block sensitivity (Beals et al. 1998): Q 2 (f) = ( bs(f)) Quantum adversary method (Ambainis 2000) Problem: Every 1-1 input differs in at least n/2 places from every 2-1 input

Lemma (follows Beals et al. 1998): Let (x i,h)=1 if x i =h, 0 otherwise. Then P(X) is poly of deg 2T over the (x i,h). Proof: Let t,X,,i,z = amplitude of |,i,z after t queries. t,X,,i,z is poly of deg t, by induction. Base case (t=0) trivial. Unitaries cant increase degree. Query replaces t,X,,i,z by

Input Distribution D(g): Uniform distribution over g-1 inputs Technicality: g might not divide n But assume for simplicity that it does Let Exercise: Show that, if T=O( n), then P(g) is a polynomial of degree 2T in g for integers 1 g n.

Monomials of P(X) I(X) = product of r variables (x i,h) Let Then for some I,

Calculating (I,g): #1 Range of I: Y.w=|Y|. (I,g) = 0 unless Y S (range of X) So since

Calculating (I,g): #2 Given an S containing Y, # of g-1 inputs of size n: n!/(g!) n/g Let {y 1,…,y w } be distinct values in Y –r i = # of times y i appears in Y –r 1 + … + r w = r # of g-1 inputs X with range S s.t. I(X)=1:

Becomes ~polynomial(g) Polynomial in g of degree w + (r-w) = r 2T

Markovs Inequality Let P(x) be a poly with b 1 P(x) b 2 for all a 1 x a 2 and |dP(x*)/dx| c for some a 1 x* a 2. Then Long Short Large derivative

Lower Bound 0 P(g) 1 for all 0 g n P(1) 1/10 and P(2) 9/10 So dP/dg 4/5 somewhere (n 1/4 ) lower bound would follow if g always divided n Can fix to obtain an (n 1/5 ) bound Shi found a better way to fix

4. Dynamical Models

A Puzzle Let|O R = you seeing a red dot |O B = you seeing a blue dot What is the probability that you see the dot change color?

Why Is This An Issue? Quantum theory says nothing about multiple-time or transition probabilities But then what is a prediction, or the output of a computation, or the utility of a decision? Reply: But we have no direct knowledge of the past anyway, just records

Results (submitted to PRL, quant-ph/ ) What if you could examine an observers entire history? Defined class DQP Showed SZK DQP. Combined with collision bound, implies oracle A for which BQP A DQP A Can search an N-element list in order N 1/3 steps, though not fewer

BPP BQPSZK DQP

5. Current and Future Work

BQP versus PH Almost-complete (?!) joint work with Umesh Conjecture: BQP A PH A for an oracle A (Best known: BQP A ( 2 ) A ) Use Recursive Fourier Sampling Have reduced problem to generalizing the Razborov-Smolensky circuit lower bound Need to show replacer gates dont help us compute sum modulo 3

BPP A vs. BQP A for random A Conjecture: If BPP=BQP, then BPP A =BQP A with probability 1 What I can show: If BPP=BQP then BPTime[polylog]=BQTime[polylog] Whats missing: Extend the result of Beals et al. (1998) that D(f)=O(Q 2 (f) 6 ) for all total f to almost-total f Does the same hold for BPP vs. SZK, or even P vs. NP coNP? (cf. Rudichs thesis)

Limitations of Shor-like algorithms Defined a class BPP BQP shor BQP Subclass of quantum algorithms that prepare a state x |x |f(x), then ignore |f(x) and do something simple to |x Conjecture 1: BQP shor AM. Implies that if NP BQP shor then PH= 2 Conjecture 2: Shor-like query algorithms yield no asymptotic speedup for any total function

Physics Modulo Complexity Assumptions Can some version of M-theory decide SAT? (cf. Preskills talk) If so, move on to the next version! Anthropic computer for solving NP-complete problems efficiently Stupid question: Why cant I just will myself to solve NP-complete problems? (Or generate truly random sequences?)

Postulate: No matter who you are, someone can give you a 3SAT instance that you cant decide with probability ½+. What constraints does that impose?