Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 5th.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

LEUCEMIA MIELOIDE AGUDA TIPO 0
The divergence of E If the charge fills a volume, with charge per unit volume . R Where d is an element of volume. For a volume charge:
Substitution.
1 Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 8th Lecture / 8. Vorlesung.
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 8 / Vorlesung 8 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I)
Dr.-Ing. René Marklein - NFT I - Lecture 10 / Vorlesung 10 - WS 2005 / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 38.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Source of slides: Introduction to Automata Theory, Languages and Computation.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
Coordinate Plane Practice The following presentation provides practice in two skillsThe following presentation provides practice in two skills –Graphing.
0 - 0.
ALGEBRAIC EXPRESSIONS
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
MULTIPLYING MONOMIALS TIMES POLYNOMIALS (DISTRIBUTIVE PROPERTY)
ADDING INTEGERS 1. POS. + POS. = POS. 2. NEG. + NEG. = NEG. 3. POS. + NEG. OR NEG. + POS. SUBTRACT TAKE SIGN OF BIGGER ABSOLUTE VALUE.
MULTIPLICATION EQUATIONS 1. SOLVE FOR X 3. WHAT EVER YOU DO TO ONE SIDE YOU HAVE TO DO TO THE OTHER 2. DIVIDE BY THE NUMBER IN FRONT OF THE VARIABLE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
ALGEBRAIC EXPRESSIONS
BALANCING 2 AIM: To solve equations with variables on both sides.
ZMQS ZMQS
BT Wholesale October Creating your own telephone network WHOLESALE CALLS LINE ASSOCIATED.
Lecture 5: Time-varying EM Fields
EMLAB 1 Introduction to EM theory 1. EMLAB 2 Electromagnetic phenomena The globe lights up due to the work done by electric current (moving charges).
ABC Technology Project
© S Haughton more than 3?
Twenty Questions Subject: Twenty Questions
Squares and Square Root WALK. Solve each problem REVIEW:
Energy & Green Urbanism Markku Lappalainen Aalto University.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Past Tense Probe. Past Tense Probe Past Tense Probe – Practice 1.
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
25 seconds left…...
Test B, 100 Subtraction Facts
Week 1.
We will resume in: 25 Minutes.
1 Unit 1 Kinematics Chapter 1 Day
How Cells Obtain Energy from Food
EE3321 ELECTROMAGENTIC FIELD THEORY
Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 5th.
Lecture 16 Today Gradient of a scalar field
S. Mandayam/ EEMAG-1/ECE Dept./Rowan University Engineering Electromagnetics Fall 2004 Shreekanth Mandayam ECE Department Rowan University.
EM & Vector calculus #3 Physical Systems, Tuesday 30 Jan 2007, EJZ Vector Calculus 1.3: Integral Calculus Line, surface, volume integrals Fundamental theorems.
Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden.
Lecture 4: Boundary Value Problems
Chapter 10 Vector Calculus
EMLAB Chapter 4. Potential and energy 1. EMLAB 2 Solving procedure for EM problems Known charge distribution Coulomb’s law Known boundary condition Gauss’
Electrostatic potential and energy fall EM lecture, week 2, 7. Oct
Tuesday Sept 21st: Vector Calculus Derivatives of a scalar field: gradient, directional derivative, Laplacian Derivatives of a vector field: divergence,
CALCULUS III CHAPTER 5: Orthogonal curvilinear coordinates
University of Utah Introduction to Electromagnetics Lecture 14: Vectors and Coordinate Systems Dr. Cynthia Furse University of Utah Department of Electrical.
EXAMPLES OF SOLUTION OF LAPLACE’s EQUATION NAME: Akshay kiran E.NO.: SUBJECT: EEM GUIDED BY: PROF. SHAILESH SIR.
Del Operator 1. Symbolic notation: the del operator To have a compact notation, wide use is made of the symbolic operator “del” (some call it “nabla”):
ECE 305 Electromagnetic Theory
MA 6251 MATHEMATICS-II . M.JAYAKUMAR ASSISTANT PROFESSOR
EEE 161 Applied Electromagnetics
Curvilinear Coordinates
Capacitance and Resistance
EEE 161 Applied Electromagnetics
G L Pollack and D R Stump Electromagnetism
Lecture 16 Gradient in Cartesian Coordinates
Presentation transcript:

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 5th Lecture / 5. Vorlesung University of Kassel Dept. Electrical Engineering / Computer Science (FB 16) Electromagnetic Field Theory (FG TET) Wilhelmshöher Allee 71 Office: Room 2113 / 2115 D Kassel Universität Kassel Fachbereich Elektrotechnik / Informatik (FB 16) Fachgebiet Theoretische Elektrotechnik (FG TET) Wilhelmshöher Allee 71 Büro: Raum 2113 / 2115 D Kassel Dr.-Ing. René Marklein

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 2 ES Fields / ES Felder Scalar Electrostatic Potential / Skalares Elektrostatisches Potential Electrostatic (ES) Fields / Elektrostatische (ES) Felder Electrostatic Potential / Elektrostatisches Potential Integral Form / Differential Form / Integralform Differentialform Given, Prescribed! / Gegeben, vorgeschrieben! Standard Way: Method of Potentials / Standard Weg: Methode der Potentiale Vacuum / Vakuum Unknown! / Unbekannt! Electrostatics / Elektrostatik: Scalar Electrostatic Potential / Skalares elektrostatisches Potential

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 3 Del (Nabla), Grad, Div, and Curl Operator in Cartesian Coordinate System / Nabla-, Grad-, Div- und Rot-Operator im Kartesischen Koordinatensystem Gradient / Gradient Divergence / Divergenz Curl / Rotation Del (Nabla) Operator / Nabla-Operator

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 4 Del (Nabla) Operator in Orthogonal Curvilinear Coordinate System / Nabla-Operator im orthogonal krummlinigen Koordinatensystem Del (Nabla) Operator / Nabla-Operator Generalized Curvilinear Coordinates / Verallgemeinerte krummlinige Koordinaten is a Vector / ist ein Vektor The del Operator / Der Nabla-Operator

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 5 Vector-analytical Expressions in the Different Coordinate Systems / Vektoranalytische Ausdrücke in den verschiedenen Koordinatensystemen Cartesian Coordinates / Kartesische Koordinaten Cylindrical Coordinates / Zylinderkoordinaten Spherical Coordinates / Kugelkoordinaten

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 6 Cartesian Coordinates / Kartesische Koordinaten Cylindrical Coordinates / Zylinderkoordinaten Spherical Coordinates / Kugelkoordinaten Vector-Analytical Expressions in the Different Coordinate Systems / Vektoranalytische Ausdrücke in den verschiedenen Koordinatensystemen

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 7 ES Fields / ES Felder Scalar Electrostatic Potential / Skalares Elektrostatisches Potential Electrostatic (ES) Fields / Elektrostatische (ES) Felder Electrostatic Potential / Elektrostatisches Potential Integral Form /Differential Form / IntegralformDifferentialform Irrotational Field can be always Represented by a Gradient Field / Rotationsfreies Feld kann immer als Gradientenfeld dargestellt werden because / weil In General / Im allgemeinen General Vector Analytic Property / Allgemeine Vektoridentität Electrostatic Potential / Elektrostatisches Potential

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 8 Electrostatic Field Problem – Example: Parallel Plate Capacitor / Elektrostatisches Feldproblem – Beispiel: Paralleler Plattenkondensator Scalar Field: Electrostatic Potential / Skalarfeld: Elektrostatisches Potenzial Vector Field: Electrostatic Field Strength / Vektorfeld: Elektrostatische Feldstärke

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 9 Example: Dielectric Sphere in a Homogeneous Electrostatic Field / Beispiel: Dielektrische Kugel im homogenen elektrostatischen Feld (1)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 10 Example: Dielectric Sphere in a Homogeneous Electrostatic Field / Beispiel: Dielektrische Kugel im homogenen elektrostatischen Feld (2)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 11 Example: Dielectric Sphere in a Homogeneous Electrostatic Field / Beispiel: Dielektrische Kugel im homogenen elektrostatischen Feld (3)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 12 Example: Dielectric Sphere in a Homogeneous Electrostatic Field / Beispiel: Dielektrische Kugel im homogenen elektrostatischen Feld (4)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 13 Example: Dielectric Sphere in a Homogeneous Electrostatic Field / Beispiel: Dielektrische Kugel im homogenen elektrostatischen Feld (5)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 14 Example: Dielectric Sphere in a Homogeneous Electrostatic Field / Beispiel: Dielektrische Kugel im homogenen elektrostatischen Feld (6/1)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 15 Example: Dielectric Sphere in a Homogeneous Electrostatic Field / Beispiel: Dielektrische Kugel im homogenen elektrostatischen Feld (6/2)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 16 Example: Dielectric Sphere in a Homogeneous Electrostatic Field / Beispiel: Dielektrische Kugel im homogenen elektrostatischen Feld (6/3)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 17 Example: Dielectric Sphere in a Homogeneous Electrostatic Field / Beispiel: Dielektrische Kugel im homogenen elektrostatischen Feld (6/4)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 18 ES Fields / ES Felder Poisson and Laplace Equation / Poisson- und Laplace-Gleichung (1) Differential Form / Differentialform Vacuum / Vakuum because / weil or / oder Laplace Operator / Laplace-Operator Electrostatic (ES) Fields – Poisson and Laplace Equation / Elektrostatische (ES) Felder – Poisson- und Laplace-Gleichung (1)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 19 Laplace Operator / Laplace-Operator Laplace Operator in Cartesian Coordinates / Laplace-Operator in Kartesischen Koordinaten ES Fields / ES Felder Poisson and Laplace Equation / Poisson- und Laplace-Gleichung (2) Electrostatic (ES) Fields – Poisson and Laplace Equation / Elektrostatische (ES) Felder – Poisson- und Laplace-Gleichung (2)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 20 ES Fields / ES Felder Poisson and Laplace Equation / Poisson- und Laplace-Gleichung (2) Electrostatic (ES) Fields – Poisson and Laplace Equation / Elektrostatische (ES) Felder – Poisson- und Laplace-Gleichung (3) Laplace Operator in Cartesian Coordinates / Laplace-Operator in Kartesischen Koordinaten Example: pn Junction – pn Diode / Beispiel: pn-Übergang – pn Diode Example: / Beispiel: Separation of Variables / Separation der Variablen !

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 21 End of Lecture 5 / Ende der 5. Vorlesung