Nucleic Acids.

Slides:



Advertisements
Similar presentations
copyright cmassengale
Advertisements

Protein Synthesis Jessica Hawley.
History of DNA.
PROTEIN SYNTHESIS.
Review 1. Base Pairing Rule Watson and Crick showed that DNA is a double helixWatson and Crick showed that DNA is a double helix A (adenine) pairs with.
DNA Chapter 10.
DNA AND PROTEIN SYNTHESIS DNA (DEOXYRIBONUCLEIC ACID) Nucleic acid that composes chromosomes and carries genetic information.
PROTEIN SYNTHESIS.
RNA.
Protein Synthesis The production (synthesis) of polypeptide chains (proteins) Two phases: Transcription & Translation mRNA must be processed before it.
Protein Synthesis Human Biology. DNA Deoxyribonucleic Acid Twisted ladder or double helix Nucleotides Composed of alternating sugar (Deoxyribose) and.
NUCLEIC ACIDS AND PROTEIN SYNTHESIS. QUESTION 1 DNA.
copyright cmassengale
PROTEIN SYNTHESIS. DNA and Genes DNA DNA contains genes, sequences of nucleotide bases These Genes code for polypeptides (proteins) Proteins are used.
1 PROTEIN SYNTHESIS Preview. 2 Protein Synthesis  The production (synthesis) of polypeptide chains (proteins)  Two phases: Transcription & Translation.
1 PROTEIN SYNTHESIS. 2 Protein Synthesis  The production (synthesis) of polypeptide chains (proteins)  Two phases: Transcription & Translation.
1 PROTEIN SYNTHESIS. 2 Protein Synthesis  The production (synthesis) of polypeptide chains (proteins)  Two phases: Transcription & Translation.
1 PROTEIN SYNTHESIS. 2 Protein Synthesis  The production (synthesis) of polypeptide chains (proteins)  Two phases: Transcription & Translation  mRNA.
Hooray! First, a Video!. 2 Nucleic Acids 3 DNA!  Frederick Griffith in 1928 showed the DNA was the cell’s genetic material  Watson & Crick in the 1950’s.
PROTEIN SYNTHESIS.
RNA and Protein Synthesis. Genes are coded DNA instructions that control the production of proteins. Genetic messages can be decoded by copying part of.
RNA AND PROTEIN SYNTHESIS
1 DNA, RNA, and PROTEIN SYNTHESIS. 2 Transcription Translation DNA mRNA Ribosome Protein Prokaryotic Cell DNA  RNA  Protein.
1 PROTEIN SYNTHESIS. DNA and Genes DNA DNA contains genes, sequences of nucleotide bases These Genes code for proteins Proteins are used to build cells.
1 PROTEIN SYNTHESIS copyright cmassengale. DNA and Genes 2copyright cmassengale.
1 DNA  RNA  Protein DNA  mRNA  Protein Nuclear membrane Transcription Translation DNA mRNA Ribosome Protein Eukaryotic Cell.
PROTEIN SYNTHESIS 1. DNA AND GENES DNA ■ DNA contains genes, sequences of nucleotide bases ■ Genes have different alleles. ■ These genes code for polypeptides.
DNA Structure & Replication DNA DNA.DNA is often called the blueprint of life. In simple terms, DNA contains the instructions for making proteins.
Structure of DNA DNA is made up of a long chain of nucleotides
copyright cmassengale
copyright cmassengale
DNA, RNA and PROTEIN SYNTHESIS. WHAT MAKES UP DNA? IT IS A MOLECULE COMPOSED OF CHEMICAL SUBUNITS CALLED NUCLEOTIDES.
DNA "The Blueprint of Life".
DNA Deoxyribose Nucleic Acid – is the information code to make an organism and controls the activities of the cell. –Mitosis copies this code so that all.
1 PROTEIN SYNTHESIS. DNA and Genes DNA DNA contains genes, sequences of nucleotide bases These Genes code for polypeptides (proteins) Proteins are used.
Write the complementary strand: 5’ T G A C A G C T T C 3’
DNA, RNA, and Protein Synthesis
Jessica Hawley PROTEIN SYNTHESIS.  Identify and compare DNA and RNA.  Explain the three types of RNA.  Demonstrate understanding using codon and anticodon.
PROTEIN SYNTHESIS. DNA and Genes DNA DNA contains genes, sequences of nucleotide bases These Genes code for polypeptides (proteins) Proteins are used.
Protein Synthesis Making Proteins from DNA. DNA & the Nucleus DNA cannot leave the nucleus! So how can we get the information for making proteins out.
1 The Central Dogma of Biology PROTEIN SYNTHESIS.
Chapter 10: Nucleic Acids and Protein Synthesis. DNA DNA (Deoxyribonucleic acid) –Stores and transmits genetic information –Double stranded molecule (looks.
PROTEIN SYNTHESIS. Review: DNA contains genes or a set of instructions. These genes code for a certain sequence of amino acids, that form polypeptides,
1. Transcription and Translation 2copyright cmassengale.
1 Nucleic Acids 2 Structure of DNA  made of monomers called nucleotides  nucleotides composed of a phosphate, deoxyribose sugar, and a nitrogen-containing.
RNA AND PROTEIN SYNTHESIS. Central Dogma of Biology! Genes are codes for making polypeptides (proteins) The nitrogenous bases (ATCG’s) contain the code!
1 PROTEIN SYNTHESIS. 2 Protein Synthesis  The production (synthesis) of polypeptide chains (proteins)  Two phases: Transcription & Translation  mRNA.
1 PROTEIN SYNTHESIS. DNA and Genes DNA DNA contains genes, sequences of nucleotide bases These Genes code for polypeptides (proteins) Proteins are used.
RNA AND PROTEIN SYNTHESIS. How your cell makes very important proteins proteinsThe production (synthesis) of proteins. 2 phases2 phases: 1.Transcription.
DNA replication and Protein synthesis.. DNA (Deoxyribonucleic Acid)
1copyright cmassengale. RNA 2 3 Roles of RNA and DNA DNA is the MASTER PLAN RNA is the BLUEPRINT of the Master Plan copyright cmassengale.
Protein Synthesis DNA&RNA DNA Deoxyribonucleic Acid Deoxyribonucleic Acid Shape - double helix - twisted ladder Shape - double helix - twisted ladder.
1 PROTEIN SYNTHESIS. 2 Protein Synthesis  The production (synthesis) of polypeptide chains (proteins)  Two phases: Transcription & Translation  mRNA.
copyright cmassengale
Protein Synthesis Human Biology.
DNA Structrue & Function
Nucleic Acid and Protein Synthesis
PROTEIN SYNTHESIS.
PROTEIN SYNTHESIS.
Nucleic Acids.
Nucleic Acids and Protein Synthesis
What is DNA? Instructions for making proteins
PROTEIN SYNTHESIS.
PROTEIN SYNTHESIS.
copyright cmassengale
copyright cmassengale
PROTEIN SYNTHESIS.
DNA, RNA, and Protein Synthesis
Presentation transcript:

Nucleic Acids

DNA or Protein? Walter Sutton discovered chromosomes were made of DNA and Protein However, scientists were NOT sure which one (protein or DNA) was the actual genetic material of the cell

DNA! Frederick Griffith in 1928 showed the DNA was the cell’s genetic material Watson & Crick in the 1950’s built the 1st model of DNA

Structure of DNA DNA is made of subunits called nucleotides DNA nucleotides are composed of a phosphate, deoxyribose sugar, and a nitrogen-containing base The 4 bases in DNA are: adenine (A), thymine (T), guanine (G), and cytosine (C)

Notice that the 3’ and 5’ refer to a numbering system for the carbon atoms that make up the sugar. DNA Nucleotide

Base Pairing Rule Watson and Crick showed that DNA is a double helix A (adenine) pairs with T (thymine) C (cytosine) pairs with G (guanine)

Nitrogen Rings Purines have double rings of carbon-nitrogen (G, A) Pyrimidines have single carbon-nitrogen rings (C, T) This is called complementary base pairing because a purine is always paired with a pyrimidine

5’ to 3’ Sugars . When the DNA double helix unwinds, it resembles a ladder The sides of the ladder are the sugar-phosphate backbones The rungs of the ladder are the complementary paired bases The two DNA strands are anti-parallel (they run in opposite directions)

Anti-Parallel Strands of DNA On the left is the DNA double helix. When the helix is unwound, a ladder configuration shows that the uprights are composed of sugar and phosphate molecules and the rungs are complementary bases. Notice that the bases in DNA pair in such a way that the phosphate-sugar groups are oriented in different directions. This means that the strands of DNA end up running antiparallel to one another, with the 3’ end of one strand opposite the 5’ end of the other strand.

DNA Replication

Steps in DNA Replication Occurs when chromosomes duplicate (make copies) An exact copy of the DNA is produced with the aid of the enzyme DNA polymerase Hydrogen bonds between bases break and enzymes “unzip” the molecule Each old strand of nucleotides serves as a template for each new strand New nucleotides move into complementary positions are joined by DNA polymerase DNA polymerase is an enzyme.

Two New, Identical DNA Strands Result from Replication Replication is called semiconservative because each new double helix is composed of an old (parental) strand and a new (daughter) strand.

Another View of Replication Use of the ladder configuration better illustrates how complementary nucleotides available in the cell pair with those of each old strand before they are joined together to form a daughter strand.

RNA

RNA Differs from DNA DNA has a sugar deoxyribose 1. RNA has a sugar ribose DNA has a sugar deoxyribose 2. RNA contains the base uracil (U) DNA has thymine (T) 3. RNA molecule is single-stranded DNA is double-stranded

Structure of RNA Like DNA, RNA is a polymer of nucleotides. In an RNA nucleotide, the sugar ribose is attached to a phosphate molecule and to a base, either G, U, A, or C. Notice that in RNA, the base uracil replaces thymine as one of the pyrimidine bases. RNA is single-stranded, whereas DNA is double-stranded.

. Three Types of RNA Messenger RNA (mRNA) carries genetic information to the ribosomes Ribosomal RNA (rRNA), along with protein, makes up the ribosomes Transfer RNA (tRNA) transfers amino acids to the ribosomes where proteins are synthesized

PROTEIN SYNTHESIS

Protein Synthesis The production (synthesis) of polypeptide chains (proteins) Two phases: Transcription & Translation mRNA must be processed before it leaves the nucleus of eukaryotic cells

DNA  RNA  Protein Prokaryotic Cell DNA mRNA Ribosome Protein Transcription Translation DNA mRNA Ribosome Protein Prokaryotic Cell

DNA  RNA  Protein Eukaryotic Cell DNA Pre-mRNA mRNA Ribosome Protein Nuclear membrane Transcription RNA Processing Translation DNA Pre-mRNA mRNA Ribosome Protein Eukaryotic Cell

Pathway to Making a Protein DNA mRNA tRNA (ribosomes) Protein

Genes & Proteins Proteins are made of amino acids linked together by peptide bonds 20 different amino acids exist Amino acids chains are called polypeptides Segment of DNA that codes for the amino acid sequence in a protein are called genes

Two Parts of Protein Synthesis Transcription makes an RNA molecule complementary to a portion of DNA Translation occurs when the sequence of bases of mRNA DIRECTS the sequence of amino acids in a polypeptide

Genetic Code DNA contains a triplet code Every three bases on DNA stands for ONE amino acid Each three-letter unit on mRNA is called a codon Most amino acids have more than one codon! There are 20 amino acids with a possible 64 different triplets The code is nearly universal among living organisms The fact that the genetic code is about universal in living things suggests that the code dates back to the first organisms on earth and that all living things are related.

Notice that in this chart, each of the codons (white rectangles) is composed of three letters representing the first base, second base, and third base. For example, find the rectangle where C for the first base and A for the second base intersect. You will see that U, C, A, or G can be the third base. CAU and CAC are codons for histidine; CAA and CAG are codons for glutamine.

Transcription Translation Transcription occurs when DNA acts as a template for mRNA synthesis. Translation occurs when the sequence of the mRNA codons determines the sequence of amino acids in a protein. Translation

Overview of Transcription During transcription in the nucleus, a segment of DNA unwinds and unzips, and the DNA serves as a template for mRNA formation RNA polymerase joins the RNA nucleotides so that the codons in mRNA are complementary to the triplet code in DNA

Steps in Transcription The transfer of information in the nucleus from a DNA molecule to an RNA molecule Only 1 DNA strand serves as the template Starts at promoter DNA (TATA box) Ends at terminator DNA (stop) When complete, pre-RNA molecule is released

Transcription

During transcription, complementary RNA is made from a DNA template During transcription, complementary RNA is made from a DNA template. A portion of DNA unwinds and unzips at the point of attachment of RNA polymerase. A strand of mRNA is produced when complementary bases join in the order dictated by the sequence of bases in DNA. Transcription occurs in the nucleus, and the mRNA passes out of the nucleus to enter the cytoplasm.

What is the enzyme responsible for the production of the mRNA molecule?

RNA Polymerase Enzyme found in the nucleus Separates the two DNA strands by breaking the hydrogen bonds between the bases Then moves along one of the DNA strands and links RNA nucleotides together

DNA pre-mRNA RNA Polymerase

Question: What would be the complementary RNA strand for the following DNA sequence? DNA 5’-GCGTATG-3’

Answer: DNA 5’-GCGTATG-3’ RNA 3’-CGCAUAC-5’

Messenger RNA (mRNA) Carries the information for a specific protein Made up of 500 to 1000 nucleotides long Sequence of 3 bases called codon AUG – methionine or start codon UAA, UAG, or UGA – stop codons

Messenger RNA (mRNA) Primary structure of a protein A U G C aa1 aa2 start codon codon 2 codon 3 codon 4 codon 5 codon 6 codon 7 codon 1 methionine glycine serine isoleucine alanine stop codon protein Primary structure of a protein aa1 aa2 aa3 aa4 aa5 aa6 peptide bonds

Ribosomes Made of a large and small subunit Composed of rRNA (40%) and proteins (60%) Have two sites for tRNA attachment --- P and A

Ribosomes Large subunit P Site A Site mRNA A U G C Small subunit

Transfer RNA (tRNA) methionine amino acid attachment site amino acid U A C anticodon methionine amino acid

Translation Synthesis of proteins in the cytoplasm Involves the following: 1. mRNA (codons) 2. tRNA (anticodons) 3. ribosomes 4. amino acids

Translation Let’s Make a Protein ! Three steps: 1. initiation: start codon (AUG) 2. elongation: amino acids linked 3. termination: stop codon (UAG, UAA, or UGA). Let’s Make a Protein !

mRNA Codons Join the Ribosome Large subunit P Site A Site mRNA A U G C Small subunit

Initiation G aa2 A U U A C aa1 A U G C U A C U U C G A codon 2-tRNA anticodon A U G C U A C U U C G A hydrogen bonds codon mRNA

Elongation G A aa3 peptide bond aa1 aa2 U A C G A U A U G C U A C U U 3-tRNA G A aa3 peptide bond aa1 aa2 1-tRNA 2-tRNA anticodon U A C G A U A U G C U A C U U C G A hydrogen bonds codon mRNA

Ribosomes move over one codon aa1 peptide bond 3-tRNA G A aa3 aa2 1-tRNA U A C (leaves) 2-tRNA G A U A U G C U A C U U C G A mRNA Ribosomes move over one codon

peptide bonds G C U aa4 aa1 aa2 aa3 G A U G A A A U G C U A C U U C G 4-tRNA G C U aa4 aa1 aa2 aa3 2-tRNA 3-tRNA G A U G A A A U G C U A C U U C G A A C U mRNA

Ribosomes move over one codon peptide bonds 4-tRNA G C U aa4 aa1 aa2 aa3 2-tRNA G A U (leaves) 3-tRNA G A A A U G C U A C U U C G A A C U mRNA Ribosomes move over one codon

peptide bonds U G A aa5 aa1 aa2 aa4 aa3 G A A G C U G C U A C U U C G 5-tRNA aa5 aa1 aa2 aa4 aa3 3-tRNA 4-tRNA G A A G C U G C U A C U U C G A A C U mRNA

Ribosomes move over one codon peptide bonds U G A 5-tRNA aa5 aa1 aa2 aa3 aa4 3-tRNA G A A 4-tRNA G C U G C U A C U U C G A A C U mRNA Ribosomes move over one codon

Termination aa5 aa4 aa3 primary structure of a protein aa2 aa1 A C U C terminator or stop codon 200-tRNA A C U C A U G U U U A G mRNA

End Product –The Protein! The end products of protein synthesis is a primary structure of a protein A sequence of amino acid bonded together by peptide bonds aa1 aa2 aa3 aa4 aa5 aa200 aa199