Introduction: True North Consulting, LLC Phone (970)

Slides:



Advertisements
Similar presentations
CONTROLS OF SUPER CRITICAL BOILERS
Advertisements

Preventing Equipment Failures
Fundamentals of Pressure Relief Devices
SAGD ELift Applications
Testing steam traps using airborne ultrasound inspection
Basic Refrigeration Cycle
Where We Go Wrong In Line Sizing Dick Hawrelak Presented to ES317Y in 1999 at UWO.
HATCH UNIT 1 CONDENSER HOTWELL DAMAGE & LONG CYCLE CLEANUP VALVE LEAKAGE FORCED OUTAGES JAN 2013 & OCT 2013.
STEAM TRAPS.
Tennessee Technology Center Center at Pulaski. Superheat & Sub-cooling A Technician’s Guide to HVACR Diagnostics.
Energy Efficient Steam Systems. Steam Systems Steam systems most widely used type of process heating Advantages of steam: –Heat carrying capacity of steam.
Budget Shortfall Options Ian Wyatt - Atkins JIP on Bursting Disks for Shell & Tube Exchangers – 2 nd Stakeholders Meeting.
Tool removed during cycle Fault #2 Conditions for setting Tool cocked prox switch goes open during cycle AND force on load cell drops below limit in fault.
Computer Engineering 203 R Smith Project Tracking 12/ Project Tracking Why do we want to track a project? What is the projects MOV? – Why is tracking.
Maintenance At Your WWTP August 2010
Lesson 25 TWO-PHASE FLUID FLOW
Vapor and Combined Power Cycles
1 Heat Exchangers. Standards of Conduct in Training 2.
NRC PERSPECTIVE ON RELIEF AND SAFETY VALVES Charles G. Hammer Component Performance & Testing Branch Division of Component Integrity Office of Nuclear.
Early detection of Tube Support Degradation in Feedwater Heaters Presentation to the 2013 Feedwater System Reliability Improvement Meeting January 21-24,
Walter G Bischoff Brunswick station Duke Energy
Internal Control in a Financial Statement Audit
A Train of Closed Feed Water Heaters A Trade off between Irreversibility and Reliability !!! P M V Subbarao Professor Mechanical Engineering Department.
During a mains supply interruption the entire protected network is dependent on the integrity of the UPS battery as a secondary source of energy. A potential.
Irreversible Flow from Turbine Exit to Condenser
NEIL Requirements for Testing of FWH Electrical Equipment and AOV’s.
Oil Pressure Problems What to look for.
Hydraulics For The Long Term
Exergy Analysis of STHE P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Formalization of Thermo-economics…..
Cook Nuclear Power Plant
Learning, our way Examples of bad installation. CONTENT Installation related examples Installation related examples Application related examples Application.
Quantifying Cycle Isolation Losses and Integration with On Line Systems Feedwater System Reliability Users Group 2015 Meeting San Antonio Ken Porter Rich.
Heat Exchanger & Classification Prepared by: Nimesh Gajjar
Industrial Process Control: CONTROL OF HEAT EXCHANGER
HVAC523 Basic Subsystems.
Hawke’s Bay Refrigeration
MineralScan Fill Level Signal Examples & Explanations - RNMC Introduction The MineralScan MillSlicer system normally consists of two fixed vibration sensors.
Eric Backus FW System Engineer Exelon - LaSalle Station FSRUG Executive Board Member.
FSRUG Presentation – January 2014 Tennessee Valley Authority Browns Ferry Nuclear Plant Unit 3 Reactor Feed Water (FW) Clean Up Piping Break.
Feedwater System Reliability Users Group – 2012 Meeting Power Uprates & Feedwater Heaters 1.
Western Regional Gas Conference August 24, 2010 Distribution Integrity Management Programs (DIMP) Rule.
Lesson 8 SECOND LAW OF THERMODYNAMICS
MSR Effects Upon Secondary Cycle. ## # 666 Heater Drain Pump Main Steam Main Turbine #6 FWH MSR #5 FWH #4 FWH MOV Drain Tank Manual Valve AOV Note: Most.
Presentation on Preventive Maintenance
Harris Plant - Heater Drain System Transients INPO ICES # HNP Root Cause Evaluation
Service Level Agreements Service Level Statements NO YES The process of negotiating and defining the levels of user service (service levels) required.
SURGE Compressor surge is an unstable phenomenon where the gas flow forward and backward across the machine alternatively. This phenomenon occurs at certain.
1-1-Why Maintenance HVAC ? Increases equipment life & reliability Reduces size & scale & number of repairs Lowers maintenance costs through better.
Automotive Engines: Theory and Servicing, 7/e By James D. Halderman Copyright © 2011, 2009, 2005, 2001, 1997 Pearson Education, Inc., Upper Saddle River,
Cryogenic Summary - K. C. Wu Testing D2L102 in MAGCOOLJune, 02 Difference between D2L102 and D2L101 Operating Summary Cooldown to 100 K and 6 K Test Condition.
Equipment Life Optimization Program (ELOP) Doug Hilleman February 10, 2011.
RISK MANAGEMENT FOR COMMUNITY EVENTS. Today’s Session Risk Management – why is it important? Risk Management and Risk Assessment concepts Steps in the.
Department of Defense Voluntary Protection Programs Center of Excellence Development, Validation, Implementation and Enhancement for a Voluntary Protection.
Failure Modes, Effects and Criticality Analysis
Flammable Liquids Directorate of Training and Education
Temperature Test Allows monitoring of temperature changes.
Heat Exchangers and Condensers
ARAC/H/F Air-cooled water chillers, free-cooling chillers and heat pumps Range: kW.
Objectives Evaluate the performance of gas power cycles for which the working fluid remains a gas throughout the entire cycle. Analyze vapor power.
LP Feedwater Heater Tube Failure Point Beach Nuclear Plant
Simple Thermal Power Plant
TOPIC:- VAPOUR CYCLES CREATED BY:
What is Desuperheater Water heater and its Applications?
Lesson 24 NATURAL CIRCULATION
A Train of Closed Feed Water Heaters
Root Cause Analysis for Effective Incident Investigation
2015 EPRI Heat Rate Conference
Parker domnick hunter. Safety of Electrical and
Presentation transcript:

Feedwater System Reliability Users Group – 2012 Meeting Feedwater Heater Level Optimization

Introduction: True North Consulting, LLC Phone (970) 252-1489 Frank Todd – Mgr. Thermal Perf. Group Phone (856) 391-3347 fdt@tnorthconsulting.com Iver Jacobson—Sr. Consulting Engineer Phone (479) 967-5077 or (479) 280-9072 (cell) ijj@tnorthconsulting.com Heat Exchanger Training

Terminal Objective Familiarize the attendee with the importance of feedwater heater level optimization and the associated issues with establishing the best operating level.

Enabling Objectives Understand physical impact of variations in FWH operating level. Understand the knee curve for DCA. Review reasons for changing operating level. Review causes for incorrect level indication. Understand basic FWH level test process. Review precautions for an event-free test. Understand impact of degraded FWH internals on test results.

Feedwater Heater Level Feedwater Heater Optimum Level: Below active tubes (thermal efficiency) Flooded enough to prevent drain cooler entrance steam in-leakage or flashing. (reliability) Achieve maximum reliability as main target and optimum DCA & TTD as secondary.

Feedwater Heater Level

Feedwater Heater Level Knee response of DCA to FWH level.

Feedwater Heater Level In conjuction with the degrading DCA, flow velocity in the DC increases due to the two- phase flow, causing vibration damage.

Feedwater Heater Level Two-phase flow and high tube vibration can cause loss of baffle plates and tube failure.

Feedwater Heater Level Why isn’t original FWH level still ok? Error / mistake in establishing Tube plugging (lower rows) – increases dp before drains are sub-cooled (flashing) Flow increase – uprate, turbine changes, lower FW inlet temperature Higher DC inlet dp – debris in bottom of shell at DC entrance. Unstable LCV (cycling) causes level swing

Feedwater Heater Level Is my indicated FWH level correct? The originally specified level may be suitable for operation, but the indicated level may not accurately reflect actual level at the drain cooler entrance. Best Fix – Level Test A level test can establish an appropriate operating level “as indicated” (don’t need absolute value).

Feedwater Heater Level Why is indicated FWH level wrong? (Reference HEI – Closed Feedwater Heaters, App. A.2.4; $450) Excess steam condensing in level gauge pipe (i.e. uninsulated pipe run, or excessive length) High velocity past top pipe connection (see pic.) Sediment/blockage in bottom level leg. Loop seal trapping condensate in top leg (rare) Improperly installed, closed, or stem-disc separation in level instrument piping valves Level tap connection location away from DC entrance. “Heater level should always be established by a test.”

Feedwater Heater Level Vendor Generic FWH Example Diagram: Notice large spacing between steam nozzle and liquid level connection.

Feedwater Heater Level FWH Shell Diagram (actual) Notice proximity of level connection taps and steam nozzle (i.e. high velocity past level tap)

Feedwater Heater Level Potential indicators level is not optimum? DCA – elevated compared to design, opposite train, or historical values, or unstable value. TTD – higher than design and DCA is either normal or lower than design. (high level) Tube degradation / failure in drain cooler. Noise (popping, banging, thumping) in shell. Cycling or difficult to tune/damp LCV FWH level is only one of many possible causes.

Feedwater Heater Level I have “symptoms” of needing a level test. What are my options? Raise operating level w/o test. Perform FWH level test(s). In-house or with fleet and peer support External contracted support. Improve conditions (i.e. insulate pipe, tune controllers to address level oscillation)

Feedwater Heater Level Raise FWH Operating Level + Simpler than a test, reduces risk. + Improvement often seen w/ +1”to +3” + Minor engineering eval. (typically) Consider margins to alarm & dump valve Consider stability of controller Consider physical range of displacer tube.

Feedwater Heater Level FWH level controller devices

Feedwater Heater Level Test Level Test - Simplified Summary Step 1: Raise level to high level constraint. Step 2: Record data after stabilized. Step 3: Lower level in steps to low constraint. Step 4: Record stabilized data at each step.

Feedwater Heater Level Test High level constraint: Typically high-level alarm May be upper adjustable range of normal controller Low level constraint (first reached): Low level alarm Sharp increase in DCA or noise in shell Lower adjustable range of normal level controller Bottom of level indicator/sight glass

Feedwater Heater Level Test Simple Concept – but Beware! FWH level tests must be: - Well planned. (be thorough) - Well communicated. (be engaged) - Well executed. (be deliberate) FWH level tests have been performed at hundreds of sites on thousands of heaters for more decades than you have lived.

FWH Test Considerations Always Remember Murphy’s Law! Whatever can go wrong, will go wrong! It will go wrong at the worst possible time! It will go wrong on the worst component! It will all be remembered as your fault!

FWH Test Considerations Not a fun day at the office:

FWH Test Considerations Much faster turbine disassembly with improved lighting and ventilation.

FWH Test Considerations 1. Learn from others mistakes/misfortunes. Study and use related OE. 2. Establish team – System Engineer, Operator and I&C tech. Engage/involve team in all phases. 3. Know level instrument setpoints and actions (alarms, dump valve open, bleeder trip release, heater bypass/isolation)

FWH Test Considerations 4. Develop contingency plans and exit strategies for off-normal conditions or responses. 5. Ensure affected level equipment is available and functioning properly before the test. (including downstream heaters or drain tanks)

FWH Test Considerations (contd.) 6. Consider supplemental instruments (e.g. acoustic monitoring to detect shell noise) 7. Level controller response may be poor near extremes of adjustable range. 8. Steam flow into drain cooler at knee may cause control oscillations. 9. Consider affects on other components (other FWHs, drain tanks, MSR, etc.)

Feedwater Heater Level Example of FWH Level Values:

Feedwater Heater Level EPRI TR-1003472: Level Control Guide Good resource. Be familiar, but be careful (not perfect). “Do not rely on the manufacturer’s markings.” Perform level tests on all heaters (justification?) Re-perform level test after tube plugging (if extensive) Level testing (Sec. 7.3) – discusses option of raising level by manually closing LCV (not recommended) Knee indications list: rapid change in DCA (maybe), and drain outlet pressure (unlikely), and increase in flow noise (may not be detected) Good OE summaries/examples in App. E.

Feedwater Heater Level Level Tests – “Different Results” The knee may be less obvious, or if found, DCA may remain elevated at levels well above it: Drain cooler breach may exist above the range of the level test. Control room level indication errors and/or Ops procedure limits may not allow knee to be reached. Tests at higher levels are possible, but require greater precautions. Request shell-side inspections if high DCA remains above knee (particularly if tube damage exists). New optimum level may require setpoint and/or physically raising level instruments.

Feedwater Heater Level If a breach in the drain cooler shroud exists, its size and location will affect level test results.

Feedwater Heater Level Drain cooler shroud degradation example.

Feedwater Heater Level Loose material in the shell is a “wild card”. Failed shell liners, plates, tubes, tools, etc. may relocate during flow transients.

Feedwater Heater Level Sustained operation with tube leaks is a common cause of sheared tube fragments in the shell.

Feedwater Heater Level Level Test Potential Benefits: Improved Reliability – arrest or slow degradation Reduced O&M Cost – longer PM intervals for ECT. Reduced Capital Cost – longer service life Efficiency Gain – more MW Improved level control stability Reduced wear/tear on control valves Improved overall system stability Knowledge – improved basis/justification for more intensive inspections or repairs to address condition.

Feedwater Heater Level Potential Actions/Changes from Level Test: Operating Level (normal, high level dump) Setpoint Changes (alarms, interlocks) PM Intervals (ECT extended per reduced damage rate) Shell-side Internals Inspection FWH Condition Assessment Evaluation

Feedwater Heater Level Portable ultrasonic instruments, such as UE Systems Ultraprobe, can be useful during walkdowns, monitoring, or level tests.

Feedwater Heater Level Summary of FWH Level Optimization: Optimum level maximizes reliability and to the extent possible efficiency. Previous operating levels may be unsuitable due to changed conditions in system or FWH. Indicated level may not be accurate. Level tests are used to determine best level. Level tests require careful planning/execution.

Feedwater Heater Level Questions / Comments? Contacts: Frank Todd Iver Jacobson Manager Thermal Performance Sr. Consulting Engineer True North Consulting Heat Exchanger Programs Office:856-391-3347 479-280-9072 www.tnorthconsulting.com ijj@tnorthconsulting.com fdt@tnorthconsulting.com