ALI/ARDS Zsolt Molnár University of Szeged AITI

Slides:



Advertisements
Similar presentations
Pediatric ARDS: Understanding It and Managing It James D. Fortenberry, MD Medical Director, Pediatric and Adult ECMO Medical Director, Critical Care Medicine.
Advertisements

Extracorporeal CO2 Removal in ARDS
Improving Oxygenation
Measurement of pulmonary gas exchange in the ICU. Stephen Rees Center for Model-based Medical Decision Support, Department of Health Science and Technology,
William 2001 Causes:  HF  Permeability edema  Both Most obstetric APE are due to noncardiogenic causes = 5% of ICU admissions = 0.5% of deliveries.
Chapter 27 Acute Lung Injury, Pulmonary Edema, and Multiple System Organ Failure Copyright © 2013, 2009, 2003, 1999, 1995, 1990, 1982, 1977, 1973, 1969.
Acute Respiratory Distress Syndrome(ARDS)
Traditional One-Lung Ventilation & ALI; Have we been killing our Patients? Philip M. Hartigan, MD Brigham & Women’s Hospital Harvard Medical School.
TRALI: It’s Not Just For Blood Bankers Anymore Norman D. Means, MD, FCAP Blood Bank of Alaska.
David W. Chang, EdD, RRT University of South Alabama.
“… an opening must be attempted in the trunk of the trachea, into which a tube of reed or cane should be put; you will then blow into this, so that the.
Tutorial: Pulmonary Function--Dr. Bhutani Clinical Case 695 g male neonate with RDS, treated with surfactant and on ventilatory 18 hours age:
How to choose optimal settings
Acute Lung Injury and ARDS
Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia – A review Crit Care Med 2006 March Vol.34 p Ri.
Acute Respiratory Distress Syndrome Sa’ad Lahri Registrar Department of Emergency Medicine UCT/ University of Stellenbosch.
“ فإذا سويته ونفخت فيه من روحي فقعوا له ساجدين“ ص ۷۲.
The Art and Science of Intraoperative Ventilator Management
Program Information Overview.
Acute Respiratory Distress Syndrome
Assistant Professor of Anesthesiology
(Adult) Acute Respiratory Distress Syndrome Paramedic Program Chemeketa Community College.
ARDS University of Washington Department of Respiratory Care Services Skills Day May, 2006.
ARDS Ruchi Kapoor April A 34 year old paraplegic man with history of neurogenic bladder is admitted to the ICU for septic shock due to UTI. He is.
ARDS for the ED Physician
Respiratory Failure Sa’ad Lahri Registrar Dept Of Emergency Medicine UCT / University of Stellenbosch.
MECHANICAL VENTILATION
Protective Lung Strategy Mazen Kherallah, MD, FCCP
Ventilatory management pf acute lung injury & acute respiratory distress syndrome By Sherif G. Anis M.D.
Roberto Fumagalli Ospedale Niguarda Ca ’ Granda Università degli Studi Milano Bicocca Milano Disclosure: none Management of native lung on ECMO.
Dr Chaitanya Vemuri Int.Med M.D Trainee.  The choice of ventilator settings – guided by clearly defined therapeutic end points.  In most of cases :
Epidemiology of Mechanical Ventilation Antonio Anzueto MD Professor of Medicine University of Texas Health Science Center, San Antonio, Texas.
BASIC VENTILATION Dr David Maritz.
RESPIRATORY SUPPORT 1.Oxygen therapy 2.Mechanical stimulator 3.Nasal CPAP / SIMV-CPAP 4.BI-PAP 5.Mechanical ventilation.
Sepsis course – II. The „debt” which can kill Zsolt Molnár SZTE, AITI.
Trauma Patients and Acute Respiratory Distress Syndrome
Adult Respiratory Distress Syndrome Kathy Plitnick RN PhD CCRN NUR 351 Critical Care Nursing.
Definitions The 1994 North American-European Consensus Conference (NAECC) criteria: Onset - Acute and persistent Radiographic criteria - Bilateral pulmonary.
Measuring end-expiratory lung volume Giacomo Bellani, M.D., Ph.D. University of Milano-Bicocca Monza, Italy
Part V Chest and Pleural Trauma
Author: Thomas Sisson, MD, 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution–Non-commercial–Share.
Acute Respiratory Acute Respiratory Failure Failure.
Sepsis course – IV: Organ support in sepsis Zsolt Molnár SZTE, AITI.
Respiratory Respiratory Failure and ARDS. Normal Respirations.
นพ. ธรรมศักดิ์ ทวิช ศรี หน่วยเวชบำบัด วิกฤต ฝ่ายวิสัญญีวิทยา รพ. จุฬาลงกรณ์
Applied physiology – II: Respiration, oxygen therapy Molnár Zsolt AITI
Use of the INVENT system for standardized quantification of clinical preferences towards mechanical ventilation C Allerød 1,2, DS Karbing 1, P Thorgaard.
Copyright © 2006 by Mosby, Inc. Slide 1 PART IX Diffuse Alveolar Disease.
The Problem ARDS - mortality % Etiology - unknown Therapy - largely supportive »mechanical ventilation Lung injury How do you ventilate the ARDS.
A&E(VINAYAKA) MECHANICAL VENTILATION IN ARDS / ALI Dr. V.P.Chandrasekaran,
ACUTE RESPIRATORY DISTRESS SYNDROME
Acute Respiratory Distress Syndrome Module G5 Chapter 27 (pp )
Acute Respiratory Distress Syndrome
ARDS Ventilator Management Nimesh Mehta, MD
Eddy Fan, MD, Dale M. Needham, MD, PhD, Thomas E. Stewart, MD
Ventilator-Induced Lung Injury N Engl J Med 2013;369: Arthur S. Slutsky, M.D., and V. Marco Ranieri, M.D 호흡기 내과 / R4 이민혜 Review Article.
경희대 호흡기내과 ACUTE RESPIRATORY DISTRESS SYNDROME (Update 2013) 호흡기내과 박명재.
Non-invasive Ventilation for Management of Pneumonia Problem Based Lecture January 28 th, 2016 S.Noll PGY-3.
IN THE NAME OF GOD.
Hypercapnic acidosis and mortality in acute lung injury Crit Care Med 2006 Vol. 34, 1-7 R2 이윤정 David A. Kregenow, MD; Gordon D. Rubenfeld, MD ; Leonard.
High frequency oscillation in patients with ALI & ARDS : systematic review and meta-analysis Sachin Sud, Maneesh Sud, Jan O Friedrich, Maureen O Meade,
Invasive Mechanical Ventilation
Pulmonary atelectasis in anaesthesia and critical care
Is there a place for pressure-support ventilation and high positive end-expiratory pressure combined to alpha-2 agonists early in severe diffuse acute.
ARDS Ruchi Kapoor April 2015.
Adult Respiratory Distress Syndrome
This lecture was conducted during the Nephrology Unit Grand Ground by Medical Student under Nephrology Division under the supervision and administration.
Introduction to ventilation
Recruitment and PEEP in ALI/ARDS
Presentation transcript:

ALI/ARDS Zsolt Molnár University of Szeged AITI

Introduction ARDS is not a definitive illness Mortality: 26% -74% Furtos-Vivar F et al. Curr Opin Crit Care 2004; 10: 1-6 Definition: Acute Lung Injury (ALI), ARDS Ashbaugh-1967, Murray-1988, American-European Consensus Conference on ARDS-1994, etc. Despite advances in critcal care, mortality related to ARDS remains high, around 50% worldwide. However, what individual clinicians mean by identifying a condition of ARDS could be a matter of debate. In other words, this condition is not a definitive illness, but the severity of the injury what the lungs suffered due to an insult in the lungs or in a remote organ, for example pancreatitis or multiple trauma. The first to realise that, or at least put it in writing, was Murray, whose paper was published in 1988, suggesting a LIS sytem, and this has been used ever since to assess the severity of lung injury. However, in the last 12 years there were at least 2 consensus conferences, the latest in 1994, in order to come to terms with the definition of what we should call ARDS. The latest paper on this subject was published this year, and the authors provide a precise, but relatively difficult to perform ARDS-SS system. To discuss the problems around ARDS definition would require another lecture, so the only reason I mentioned these papers is to highlight the difficulty of defining the condition we are going to talk about. The other are of concern regarding the injured lung is, that while we rest every other inflamed organ, we keep ventilating the injured lung with positive pressures despite it functions normally on very low, couple cmH2O positive/negative pressures. It has been known for decades, that IPPV itself can cause severe lung injury and ARDS. The major problem during ARDS is systemic hypoxia, which is due to poor oxygen uptake, as a result of diffuse atelectasis in the lungs causing high intrapulmonary, or right-to-left shunt . 2 2

Pathophysiology Disorders associated with ARDS Primary: Secondary: Aspiration, inhalation Pneumonia Secondary: Shock Infection Trauma Pancreatitis Despite advances in critcal care, mortality related to ARDS remains high, around 50% worldwide. However, what individual clinicians mean by identifying a condition of ARDS could be a matter of debate. In other words, this condition is not a definitive illness, but the severity of the injury what the lungs suffered due to an insult in the lungs or in a remote organ, for example pancreatitis or multiple trauma. The first to realise that, or at least put it in writing, was Murray, whose paper was published in 1988, suggesting a LIS sytem, and this has been used ever since to assess the severity of lung injury. However, in the last 12 years there were at least 2 consensus conferences, the latest in 1994, in order to come to terms with the definition of what we should call ARDS. The latest paper on this subject was published this year, and the authors provide a precise, but relatively difficult to perform ARDS-SS system. To discuss the problems around ARDS definition would require another lecture, so the only reason I mentioned these papers is to highlight the difficulty of defining the condition we are going to talk about. The other are of concern regarding the injured lung is, that while we rest every other inflamed organ, we keep ventilating the injured lung with positive pressures despite it functions normally on very low, couple cmH2O positive/negative pressures. It has been known for decades, that IPPV itself can cause severe lung injury and ARDS. The major problem during ARDS is systemic hypoxia, which is due to poor oxygen uptake, as a result of diffuse atelectasis in the lungs causing high intrapulmonary, or right-to-left shunt . 2 2

Acute respiratory failure Classification Type I – hypoxic Type II – hypercapnic Mixed Participating factors Initial insult Inflammatory cascade Endothelium demage „Non-cardiogenic” pulmonary oedema Fibrosis Despite advances in critcal care, mortality related to ARDS remains high, around 50% worldwide. However, what individual clinicians mean by identifying a condition of ARDS could be a matter of debate. In other words, this condition is not a definitive illness, but the severity of the injury what the lungs suffered due to an insult in the lungs or in a remote organ, for example pancreatitis or multiple trauma. The first to realise that, or at least put it in writing, was Murray, whose paper was published in 1988, suggesting a LIS sytem, and this has been used ever since to assess the severity of lung injury. However, in the last 12 years there were at least 2 consensus conferences, the latest in 1994, in order to come to terms with the definition of what we should call ARDS. The latest paper on this subject was published this year, and the authors provide a precise, but relatively difficult to perform ARDS-SS system. To discuss the problems around ARDS definition would require another lecture, so the only reason I mentioned these papers is to highlight the difficulty of defining the condition we are going to talk about. The other are of concern regarding the injured lung is, that while we rest every other inflamed organ, we keep ventilating the injured lung with positive pressures despite it functions normally on very low, couple cmH2O positive/negative pressures. It has been known for decades, that IPPV itself can cause severe lung injury and ARDS. The major problem during ARDS is systemic hypoxia, which is due to poor oxygen uptake, as a result of diffuse atelectasis in the lungs causing high intrapulmonary, or right-to-left shunt . 2 2

Diagnosis of severity CXR PaO2/FiO2 PEEP (cmH2O) Compliance (ml/cmH2O) Atelectasis/quadrant: 0-4 PaO2/FiO2 <100 - 300<: 0-4 PEEP (cmH2O) 5 - 15 0-4pont Compliance (ml/cmH2O) 29 - 80 0-4pont 2,5 = ARDS 1,5-2,5=ALI Despite advances in critcal care, mortality related to ARDS remains high, around 50% worldwide. However, what individual clinicians mean by identifying a condition of ARDS could be a matter of debate. In other words, this condition is not a definitive illness, but the severity of the injury what the lungs suffered due to an insult in the lungs or in a remote organ, for example pancreatitis or multiple trauma. The first to realise that, or at least put it in writing, was Murray, whose paper was published in 1988, suggesting a LIS sytem, and this has been used ever since to assess the severity of lung injury. However, in the last 12 years there were at least 2 consensus conferences, the latest in 1994, in order to come to terms with the definition of what we should call ARDS. The latest paper on this subject was published this year, and the authors provide a precise, but relatively difficult to perform ARDS-SS system. To discuss the problems around ARDS definition would require another lecture, so the only reason I mentioned these papers is to highlight the difficulty of defining the condition we are going to talk about. The other are of concern regarding the injured lung is, that while we rest every other inflamed organ, we keep ventilating the injured lung with positive pressures despite it functions normally on very low, couple cmH2O positive/negative pressures. It has been known for decades, that IPPV itself can cause severe lung injury and ARDS. The major problem during ARDS is systemic hypoxia, which is due to poor oxygen uptake, as a result of diffuse atelectasis in the lungs causing high intrapulmonary, or right-to-left shunt . Murray JF et al. Am Rev Respir Dis 1988; 138: 720-723 2 2

Diagnostic signs Clinical Physiologic X-ray Acute onset Tachypnea (>30) Laboured breathing Physiologic Hypoxia (PaO2/FiO2<250Hgmm) X-ray Bilateral infiltrates Despite advances in critcal care, mortality related to ARDS remains high, around 50% worldwide. However, what individual clinicians mean by identifying a condition of ARDS could be a matter of debate. In other words, this condition is not a definitive illness, but the severity of the injury what the lungs suffered due to an insult in the lungs or in a remote organ, for example pancreatitis or multiple trauma. The first to realise that, or at least put it in writing, was Murray, whose paper was published in 1988, suggesting a LIS sytem, and this has been used ever since to assess the severity of lung injury. However, in the last 12 years there were at least 2 consensus conferences, the latest in 1994, in order to come to terms with the definition of what we should call ARDS. The latest paper on this subject was published this year, and the authors provide a precise, but relatively difficult to perform ARDS-SS system. To discuss the problems around ARDS definition would require another lecture, so the only reason I mentioned these papers is to highlight the difficulty of defining the condition we are going to talk about. The other are of concern regarding the injured lung is, that while we rest every other inflamed organ, we keep ventilating the injured lung with positive pressures despite it functions normally on very low, couple cmH2O positive/negative pressures. It has been known for decades, that IPPV itself can cause severe lung injury and ARDS. The major problem during ARDS is systemic hypoxia, which is due to poor oxygen uptake, as a result of diffuse atelectasis in the lungs causing high intrapulmonary, or right-to-left shunt . 2 2

Physiology, pathophysiology Azért, mert ez nekünk jó. Márpedig ha jó, akkor törekedni kell rá.

Alveolar oxygenation Molnár ‘99 PAO2=FiO2 x [(PB-PH2O) – PaCO2/R] PvO2=40 Hgmm PAO2=FiO2 x [(PB-PH2O) – PaCO2/R] PAO2 120 Hgmm A hipovolémia során a keringő vérmennyiség csökkenése a … PaO2=120 Hgmm PA-aO2  20Hgmm Molnár ‘99

Atelectasis and shunt Molnár ‘99 O2 PvO2=40 Hgmm 120 Hgmm Most töltsük meg az egyik alveolust folyadékkal. Érkezik a kevert vénás vér, de csak az egyik alveolusban jöhet létre az oxigenizáció, a másiban marad az alacsony, vénás PO2. Ez a vénás vér hozzákeveredik az artériáshoz, beömlenek a balszívfélbe, és az artériás PO2 csak 80 Hgmm lesz, 120 helyett. Persze, nem szabad elfelejteni a hipoxiás vazokonstrikció kompenzáló hatását, ami csökkentheti ezen sönt hatását. Az tehát egyszerűen érthető, hogy mi történik, ha az alveolusban van a víz. PaO2 = (120+40)/2 = 80 Hgmm Molnár ‘99

Closing capacity (CC) In normal lungs: ALI/ARDS: CC in ERV FRC>CC CC within VT FRC<CC VT Egészséges felnőttben, szinte az összes alveolus nyitott a normális légzési térfogat (VT) tartományában, ami az alveolust bélelő, felületi feszültséget csökkentő surfactansnak köszönhető. Erőltetett kilégzéskor azonban, az ERV tartományában, a tüdő dependens részein egyes alveolusok bezáródnak (ez az un. „záródási térfogat”), ám, ez azonnal rendeződik, a belégzés során. ALI-ben az alveoláris struktúra sérült: a surfactans hiányzik, vagy csak részben van jelen, az alveolusok fala megvastagszik, ami a MRTG-en mint diffúz, foltos kép jelenik meg. Ilyen esetekben az alveolusok egy része már a VT légzés közben összeesik, és a tüdőnek egyre kevesebb létartalmu terület áll rendelkezésére, a gázcsere lebonyolítására. Az atelectasiás tüdőterületek, a hipoxiás vasoconstrictio ellenére, vérrel relative jól perfundáltak maradnak, miközben a ventilációban nem vesznek részt. Ez vezet a V/Q arány eltolódásához, amit shunt-nek hívunk. Ezek a betegek egyre növekvő koncentrációban igényelnek oxigént, a shunt-öt kompenzálandó, és azonnal hipoxiássá válnak, ha ez a támogatás csökken, vagy megszűnik. Természetesen, ez sem ok nélkül történik. Az ERV és a RV képezi a FRC-t, azt az oxigén tartalékot, mely folyamatossá teszi a gázcserét, és képessé tesz minket arra, hogy visszatarthassuk a lélegzetünket legalább 30 mp-ig a hipoxia veszélye nélkül. ARDS-ben gyakorlatilag nincs ERV, és a RV is csaknem az anatomiai holttérrel egyenlő. Az ilyen súlyos betegek kimerítették a tartalékaikat, és, bár magas áramlású 100% oxigén terápiában részesülnek, az életükért küszködnek, több mint 40/perces légzésszámmal. Mit tehetünk a továbbiakban? ERV FRC CC CC RV

The degree of shunt „Iso-shunt” diagram PaO2 Hgmm FiO2 Molnár ‘99 5% 10% 400 15% 20% „Iso-shunt” diagram Nunn JF. Appl. Resp Physiol., 1993 300 PaO2 Hgmm 25% 200 Ha meghatározzuk a beteg FiO2 és PaO2 értékeit, az itt látható Nunn professzor által közölt diagram alapján. Bár ezt nem határozzuk meg mindig, mégis mindenki minimum 30-40 % oxigénkoncentrációjú gázkeverékkel végzi a narkózist, aminek csak egyetlen magyarázata lehet. Azt hisszük, hogy ennyire van a betegnek szüksége, azaz több kell neki mint ami a levegőben van, mert söntje van. 30% 100 50% 0,2 0,6 1,0 FiO2 Molnár ‘99

Therapeutic dilemma Inflammed organs need rest IPPV: life saving intervention WareLB, Matthay MA. N Engl J Med 2000; 342: 1334-49 IPPV: if applied incorrectly: „can be deadly” Tobin MJ. N Engl J Med 2001; 344: 1986-96 Despite advances in critcal care, mortality related to ARDS remains high, around 50% worldwide. However, what individual clinicians mean by identifying a condition of ARDS could be a matter of debate. In other words, this condition is not a definitive illness, but the severity of the injury what the lungs suffered due to an insult in the lungs or in a remote organ, for example pancreatitis or multiple trauma. The first to realise that, or at least put it in writing, was Murray, whose paper was published in 1988, suggesting a LIS sytem, and this has been used ever since to assess the severity of lung injury. However, in the last 12 years there were at least 2 consensus conferences, the latest in 1994, in order to come to terms with the definition of what we should call ARDS. The latest paper on this subject was published this year, and the authors provide a precise, but relatively difficult to perform ARDS-SS system. To discuss the problems around ARDS definition would require another lecture, so the only reason I mentioned these papers is to highlight the difficulty of defining the condition we are going to talk about. The other are of concern regarding the injured lung is, that while we rest every other inflamed organ, we keep ventilating the injured lung with positive pressures despite it functions normally on very low, couple cmH2O positive/negative pressures. It has been known for decades, that IPPV itself can cause severe lung injury and ARDS. The major problem during ARDS is systemic hypoxia, which is due to poor oxygen uptake, as a result of diffuse atelectasis in the lungs causing high intrapulmonary, or right-to-left shunt . 2 2

Atelectasy and radiology Anteroposterior chest x-ray (right panel  ) and CT scans apex, hilum, and base (left panels) in ARDS from sepsis. Images were taken at 5 cm H2O end-expiratory pressure. The chest x-ray shows diffuse ground glass opacification, sparing the right upper lung. The CT scans show inhomogeneous disease and both the craniocaudal and sternovertebral gradients. Gattinoni L, et al. Intensive Care Med 1986; 12: 137-142

Correlation between alveolar recruitment/derecruitment and inflection point on the pressure-volume curve DiRocco J, et al. Intensive Care Med 2007; 33: 1204-11 Gary F. Nieman SUNY USA Normal lung ARDS lung

Alveolar recruitment „Open up the lung and keep it open!” UIP LIP Recruitment in an experimental ARDS model (oleic acid in dogs), as a function of the applied airway pressures. Recruitment occurs along the entire volume-pressure curve, even after the upper inflection point. "R" indicates the percentage of recruitment occurring at the corresponding airway pressure. The data were fitted with a sigmoid function, according to Venegas and coworkers (60). Rearranged from Pelosi and coworkers (40). Similar results were obtained in patients (41). „Open up the lung and keep it open!” Lachmann B. ICM 1992; 18: 319-321 Pelosi P, et al. AJRCCM 2001; 164: 122 Gattinoni L, et al AJRCCM 2001; 164 1701

Ideal PEEP: moving tartget Atelectasy Overdistension Increasing PEEP Nem szabad megfeledkeznünk arról, hogy az optimális PEEP egy mozgó célpont, azaz a toborzás, és túlfúvódás egyidőben történnek. Az ideális PEEP meghatározására pedig azért van szükség, mert valószínűleg ez az a PEEP, ahol a legtöbb alveolus marad nyitva, és a legkevesebben érvényesül a túlfeszülés. Ideal PEEP: moving tartget

Physiology - revisited Breathing 15/min VT: 4-7 ml/kg Ppleur: ±2-3 cmH2O FiO2= 0.21 Result PaO2: 100 mmHg PaCO2: 40 mmHg Why? Elgondolkodott-e már valaki azon, hogy normális körülmények között egy átlagos testalkatú felnőttnek miért 3-4 deciliternyi a légzési térfogata, miért mindössze +/- 2-3 vízcm nyomásnak van kitéve a tüdő a légzési ciklus alatt, és miért 21% oxigént lélegzünk, ami általában az itt látható vérgáztenziókat eredményezi? Because it’s good for us!

Case history 40 year old woman Committed sucide (20 tbl chlorpromazine) Ambulance – Psychiatry Gastric lavage A few hours later: acute abdominal pain Surgery Gastric perforation: emergency surgery ICU Több tanulmány született az elmúlt években a két lélegeztetési módszer mortalitásra kifejtett hatását vizsgálandó. Az a két tanulmány, amely nem tudott különbséget kimutatni, az utólagos elemzések alapján, nem merte a VT-t elég radikálisan csökkenteni. Míg a protektív lélegeztetés előnyeit kimutató vizsgálatok következetesebben betartották a 12 vs 6 ml/kg VT-t. A tudomány mai állása szerint az ARDS kezelésében a „tüdő prütektív” lélegeztetés az egyetlen kezelési eljárás, mely bizonyítottan javítja a mortalitást. Ebben nagy érdeme volt egy tavaly nyáron megjelent multicentrikus tanulmánynak, az ARDS Network csoport által, melyet 1000 betegre terveztek, de a harmadik köztes elemzést követően a vizsgálatot le kellett állítani, a következetesen és szignifikánsan jobb mortalitás miatt a prtoektív csoportban. 10 10

Case history In a few days Secondary ARDS = LIS>2.5 FiO2: 0.8 PaO2: 65 Hgmm PEEP: 15 H2Ocm Több tanulmány született az elmúlt években a két lélegeztetési módszer mortalitásra kifejtett hatását vizsgálandó. Az a két tanulmány, amely nem tudott különbséget kimutatni, az utólagos elemzések alapján, nem merte a VT-t elég radikálisan csökkenteni. Míg a protektív lélegeztetés előnyeit kimutató vizsgálatok következetesebben betartották a 12 vs 6 ml/kg VT-t. A tudomány mai állása szerint az ARDS kezelésében a „tüdő prütektív” lélegeztetés az egyetlen kezelési eljárás, mely bizonyítottan javítja a mortalitást. Ebben nagy érdeme volt egy tavaly nyáron megjelent multicentrikus tanulmánynak, az ARDS Network csoport által, melyet 1000 betegre terveztek, de a harmadik köztes elemzést követően a vizsgálatot le kellett állítani, a következetesen és szignifikánsan jobb mortalitás miatt a prtoektív csoportban. 10 10

Hemodynamic and respiratory changes during lung recruitment and descending optimal PEEP titration in patients with ARDS Tóth I, et al. Crit Care Med 2007; 35: 787-793

Methods Lung recruitment Anaesthesia + muscle relaxation PCV, I:E=1:1, RR: 20/min FiO2: 1.0 PEEP: 26 H2Ocm P: 40 H2Ocm/40 sec Több tanulmány született az elmúlt években a két lélegeztetési módszer mortalitásra kifejtett hatását vizsgálandó. Az a két tanulmány, amely nem tudott különbséget kimutatni, az utólagos elemzések alapján, nem merte a VT-t elég radikálisan csökkenteni. Míg a protektív lélegeztetés előnyeit kimutató vizsgálatok következetesebben betartották a 12 vs 6 ml/kg VT-t. A tudomány mai állása szerint az ARDS kezelésében a „tüdő prütektív” lélegeztetés az egyetlen kezelési eljárás, mely bizonyítottan javítja a mortalitást. Ebben nagy érdeme volt egy tavaly nyáron megjelent multicentrikus tanulmánynak, az ARDS Network csoport által, melyet 1000 betegre terveztek, de a harmadik köztes elemzést követően a vizsgálatot le kellett állítani, a következetesen és szignifikánsan jobb mortalitás miatt a prtoektív csoportban. 10 10

Paninspiratory, „tidal recruitment” Recruitment in an experimental ARDS model (oleic acid in dogs), as a function of the applied airway pressures. Recruitment occurs along the entire volume-pressure curve, even after the upper inflection point. "R" indicates the percentage of recruitment occurring at the corresponding airway pressure. The data were fitted with a sigmoid function, according to Venegas and coworkers (60). Rearranged from Pelosi and coworkers (40). Similar results were obtained in patients (41). Pelosi P, et al. AJRCCM 2001; 164: 122

Paninspiratory, „tidal recruitment” Recruitment in an experimental ARDS model (oleic acid in dogs), as a function of the applied airway pressures. Recruitment occurs along the entire volume-pressure curve, even after the upper inflection point. "R" indicates the percentage of recruitment occurring at the corresponding airway pressure. The data were fitted with a sigmoid function, according to Venegas and coworkers (60). Rearranged from Pelosi and coworkers (40). Similar results were obtained in patients (41). Pelosi P, et al. AJRCCM 2001; 164: 122

Methods Optimal PEEP titration „Closing pressure” Ideal PEEP: when PaO2 > 10% VT=4ml/kg PEEP: 26-24-22…/4 min Több tanulmány született az elmúlt években a két lélegeztetési módszer mortalitásra kifejtett hatását vizsgálandó. Az a két tanulmány, amely nem tudott különbséget kimutatni, az utólagos elemzések alapján, nem merte a VT-t elég radikálisan csökkenteni. Míg a protektív lélegeztetés előnyeit kimutató vizsgálatok következetesebben betartották a 12 vs 6 ml/kg VT-t. A tudomány mai állása szerint az ARDS kezelésében a „tüdő prütektív” lélegeztetés az egyetlen kezelési eljárás, mely bizonyítottan javítja a mortalitást. Ebben nagy érdeme volt egy tavaly nyáron megjelent multicentrikus tanulmánynak, az ARDS Network csoport által, melyet 1000 betegre terveztek, de a harmadik köztes elemzést követően a vizsgálatot le kellett állítani, a következetesen és szignifikánsan jobb mortalitás miatt a prtoektív csoportban. 10 10

Optimal PEEP Optimal PEEP titration PEEP0: 15 H2Ocm - PaO2: 276 PEEP: 26 H2Ocm - PaO2: 436 Hgmm …. PEEP: 18 H2Ocm - PaO2: 445 Hgmm PEEP: 16 H2Ocm - PaO2: 375 Hgmm Több tanulmány született az elmúlt években a két lélegeztetési módszer mortalitásra kifejtett hatását vizsgálandó. Az a két tanulmány, amely nem tudott különbséget kimutatni, az utólagos elemzések alapján, nem merte a VT-t elég radikálisan csökkenteni. Míg a protektív lélegeztetés előnyeit kimutató vizsgálatok következetesebben betartották a 12 vs 6 ml/kg VT-t. A tudomány mai állása szerint az ARDS kezelésében a „tüdő prütektív” lélegeztetés az egyetlen kezelési eljárás, mely bizonyítottan javítja a mortalitást. Ebben nagy érdeme volt egy tavaly nyáron megjelent multicentrikus tanulmánynak, az ARDS Network csoport által, melyet 1000 betegre terveztek, de a harmadik köztes elemzést követően a vizsgálatot le kellett állítani, a következetesen és szignifikánsan jobb mortalitás miatt a prtoektív csoportban. Optimális PEEP: 18 vízcm 10 10

Outcome After PEEP titration 40 days ICU – Surgery – Home Opening: („40/40”) at PEEP of 18 Result: FiO2: 0.5 vs 0.8 VT(6ml/kg): 350 vs 675 ml P: 14 vs 20 H2Ocm PEEP: 18 vs 15 H2Ocm PaO2: 115 vs 62 Hgmm 40 days ICU – Surgery – Home Több tanulmány született az elmúlt években a két lélegeztetési módszer mortalitásra kifejtett hatását vizsgálandó. Az a két tanulmány, amely nem tudott különbséget kimutatni, az utólagos elemzések alapján, nem merte a VT-t elég radikálisan csökkenteni. Míg a protektív lélegeztetés előnyeit kimutató vizsgálatok következetesebben betartották a 12 vs 6 ml/kg VT-t. A tudomány mai állása szerint az ARDS kezelésében a „tüdő prütektív” lélegeztetés az egyetlen kezelési eljárás, mely bizonyítottan javítja a mortalitást. Ebben nagy érdeme volt egy tavaly nyáron megjelent multicentrikus tanulmánynak, az ARDS Network csoport által, melyet 1000 betegre terveztek, de a harmadik köztes elemzést követően a vizsgálatot le kellett állítani, a következetesen és szignifikánsan jobb mortalitás miatt a prtoektív csoportban. 10 10

Tidal volume: VT Ha meghatároztuk az ideális PEEP-et, mekkora légzési térfogatokkal lélegeztessünk?

Volu-, or baro-trauma large VT small VT

Volu-, or baro-trauma large VT small VT

VT and inflammatory response Inflammatory response: „small” VT vs „large” VT Reduced cytokine levels in BAL after 36 h Ranieri VM et al, JAMA 1999; 282:54 Reduced plasma IL-6 on 3rd day on vent. ARDS Network, N Engl J Med 2000; 342: 1301 Egy 1995-ben megjelent tanulmány mutatott rá elsőként arra a tényre, hogy megvizsgálván a statikus PV görbéjét az ARDS-ben szenvedő betegeknek, azok 80%-ában a hagyományos lélegeztetés következtében az UIP feletti tartományban lélegeztették a betegeket, azaz a tüdő túlfúvása történt. További bizonyíték van arra vonatkozóan, hogy összehasonlítván a kis légzési térfogattal kezelt betegeket a kontrolként szolgáló hagyományos lélegeztetéssel lélegeztetett betegekkel, a protektív csoportban szignifikánsan alacsonyabb cytokin és IL-6 szinteket mértek a BAL-ban, valamint a szérumban.

VT and mortality No difference Difference Brochard et al: n=116, VT:10-15 vs 6-10 ml/kg Am J Respir Crit Care Med 1998; 158: 1831 Stewart et al: n=120, VT:10-15 vs 8 ml/kg N Engl J Med 1998; 338: 355 Difference Amato: n=53, VT:12 vs 6 ml/kg, M 28. nap: 71 vs 38% N Engl J Med 1998; 338:347 Network: n=861, VT:12 vs 6 ml/kg, M: 40% vs 31% ARDS Network, N Engl J Med 2000; 342: 1301 Network: n=549, 6 ml/kg, M: ~25% ARDS Network, N Engl J Med 2004; 351: 327 Több tanulmány született az elmúlt években a két lélegeztetési módszer mortalitásra kifejtett hatását vizsgálandó. Az a két tanulmány, amely nem tudott különbséget kimutatni, az utólagos elemzések alapján, nem merte a VT-t elég radikálisan csökkenteni. Míg a protektív lélegeztetés előnyeit kimutató vizsgálatok következetesebben betartották a 12 vs 6 ml/kg VT-t. A tudomány mai állása szerint az ARDS kezelésében a „tüdő protektív” lélegeztetés az egyetlen kezelési eljárás, mely bizonyítottan javítja a mortalitást. Azt tehát valószínű, hogy fiziológiás légzési volumenekkel jót teszünk a betegnek. Megvan a PEEP, a légzési térfogat, de milyen lélegeztetési módot válasszunk?

Other therapeutic consideration Supportive therapy Invasive haemodinamic monitoring Antibiotics Alternative therapies: Prone positioning ECMO Nitric oxide (NO) Haemofiltration The only importanr difference between the two groups was, that non-survivors had significantly more fluid removed whilst on haemofiltration. It would seem, that the improvement in the respiratory function produced by fluid fremoval is at the expense of a deterioration in renal function. Our study is too small to make firm conclusions whether or not this significant difference contributes to mortality or morbidity in any way, but we can certainly raise the following questions.

Summary ARDS is not a defintive diagnosis IPPV is against physiology Protect the lung Keep physiolology in mind The only importanr difference between the two groups was, that non-survivors had significantly more fluid removed whilst on haemofiltration. It would seem, that the improvement in the respiratory function produced by fluid fremoval is at the expense of a deterioration in renal function. Our study is too small to make firm conclusions whether or not this significant difference contributes to mortality or morbidity in any way, but we can certainly raise the following questions.

Motto There is no substitute for the clinician`s standing by the ventilator, making necessary adjustments and monitoring the effects of such adjustments. Tobin MJ, N Engl J Med 2000; 342:1360-1 It has been shown that inflammatory mediators can be found in ultrafiltrate but whether some of these mediators play a beneficial role in acute illness, is unknown. Unless we are sure that removing these mediators is helpful, we should ask whether thereis an indication at all, as the treatment carries a certain risk, it is time consuming, requires extra staff, and expensive. However, if we are convinced about its benefit, then thenext question is how early shall we commence. If we start treatment immediately before organ function is compromised then some patients will be treated unnecessarily. Regarding fluid removel, the controversy between dry and wet schools still exist in sepsis and ARDS management. Since this study we now do not remove fluid from patients on elective haemofiltration. We think, that taking 1-3 litres of fluid off during 6 hours might cause hypovolaemia, and the redistribution of blood flow can reduce oxygen delivery to the kidneys, which are already at high risk in critical illness. For this reason continuous haemofiltration might be a better alternative. We are well aware of the limitations of our small retrospective study, but our findings raise questions which has to be answered by prospective randomised trials to make the final verdict on haemofiltration as an additional treatment in the critically ill patients. 11