Proteins account for more than 50% of the dry mass of most cells

Slides:



Advertisements
Similar presentations
Proteins: Structure reflects function….. Fig. 5-UN1 Amino group Carboxyl group carbon.
Advertisements

Review.
Protein Structure and Function Review: Fibrous vs. Globular Proteins.
Review of Basic Principles of Chemistry, Amino Acids and Proteins Brian Kuhlman: The material presented here is available on the.
Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific sequence 2.A protein’s function depends.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions.
Short polymer HO 123H H Unlinked monomer Dehydration removes a water molecule, forming a new bond HO H2OH2O H Longer polymer (a) Dehydration reaction.
Proteins Function and Structure.
Pages 42 to 46.  Chemical composition  Carbon  Hydrogen  Oxygen  Nitrogen  Sulfur (sometimes)  Monomer/Building Block  Amino Acids (20 different.
Proteins include a diversity of structures, resulting in a wide range of functions Protein functions include structural support, storage, transport, enzymes,
Proteins. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range.
Proteins account for more than 50% of the dry mass of most cells
Proteins account for more than 50% of the dry mass of most cells
Proteins Function and Structure. Proteins more than 50% of dry mass of most cells functions include – structural support – storage, transport – cellular.
You Must Know How the sequence and subcomponents of proteins determine their properties. The cellular functions of proteins. (Brief – we will come back.
Proteins and Enzymes Nestor T. Hilvano, M.D., M.P.H. (Images Copyright Discover Biology, 5 th ed., Singh-Cundy and Cain, Textbook, 2012.)
Proteins account for more than 50% of the dry mass of most cells
Proteins. PROTEINS Amino acids contain an amino group, a carboxyl group, a carbon and a unique R group.
Proteins Chapter 3 A. P. Biology Mr. Knowles Liberty Senior High School.
Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein.
A protein’s function depends on its specific conformation (shape) A functional proteins consists of one or more polypeptides that have been precisely twisted,
Proteins have many structures, resulting in a wide range of functions
PROTEINS.
Proteins.
Macromolecules Part 3 Proteins. Proteins! Functions of Proteins – Structural support – Storage – Transport – Cellular communications – Movement – Defense.
NOTES: 2.3 part 2 Nucleic Acids & Proteins. So far, we’ve covered… the following MACROMOLECULES: ● CARBOHYDRATES… ● LIPIDS… Let’s review…
The Structure and Function of Macromolecules Chapter Proteins.
Proteins are instrumental in about everything that an organism does. These functions include structural support, storage, transport of other substances,
THE STRUCTURE AND FUNCTION OF MACROMOLECULES Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific.
The Structure and Function of Macromolecules Proteins & Nucleic Acids.
Macromolecules of Life Proteins and Nucleic Acids
PROTEINS. Proteins Proteins do the nitty-gritty jobs of every living cell. Proteins are made of long strings of individual building blocks known as amino.
Objective 7: TSWBAT recognize and give examples of four levels of protein conformation and relate them to denaturation.
5.4: Proteins Introduction
Proteins.
Chapter 3 Proteins.
PROTEINS L3 BIOLOGY. FACTS ABOUT PROTEINS: Contain the elements Carbon, Hydrogen, Oxygen, and NITROGEN Polymer is formed using 20 different amino acids.
Macromolecules 3: Proteins. Your Assignment Your Protein Structure Assignment 1. Define proteins and their function 2. What is an amino acid (monomers.
The Structure and Function of Macromolecules Chpt. 5 The Structure and Function of Macromolecules.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section D: Proteins -
Amino Acids. Amino acids are used in every cell of your body to build the proteins you need to survive. Amino Acids have a two-carbon bond: – One of the.
The Structure and Function of Large Biological Molecules Protein
PROTEINS FOLDED POLYPEPTIDES © 2007 Paul Billiet ODWSODWS.
AP Biology Mrs. Ramon. The Molecules of Life Macromolecules LARGE molecules Four classes: 1. Carbohydrates 2. Lipids (Fats) 3. Proteins 4. Nucleic Acids.
Proteins Tertiary Protein Structure of Enzyme Lactasevideo Video 2.
Chapter 5 Proteins.
Amino acids.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Protein Folding Notes.
Proteins account for more than 50% of the dry mass of most cells
Protein Structure.
Chpt. 5 The Structure and Function of Macromolecules
Proteins Section 3.4.
Proteins.
The Structure and Function of Large Biological Molecules
Transport proteins Transport protein Cell membrane
Proteins account for more than 50% of the dry mass of most cells
Amino acids are linked by peptide bonds
Chemistry 121 Winter 2016 Introduction to Organic Chemistry and Biochemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State)
Proteins account for more than 50% of the dry mass of most cells
Chapter 3 Proteins.
Fig. 5-UN1  carbon Amino group Carboxyl group.
The Structure and Function of Macromolecules
Proteins are involved in
Proteins account for more than 50% of the dry mass of most cells
Proteins Genetic information in DNA codes specifically for the production of proteins Cells have thousands of different proteins, each with a specific.
The Chemical Building Blocks of Life
Proteins Proteins have many structures, resulting in a wide range of functions Proteins do most of the work in cells and act as enzymes 2. Proteins are.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Proteins account for more than 50% of the dry mass of most cells
Presentation transcript:

Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein functions include structural support, storage, transport, cellular communications, movement, and defense against foreign substances © 2011 Pearson Education, Inc.

Polypeptides Polypeptides are unbranched polymers built from the same set of 20 amino acids A protein is a biologically functional molecule that consists of one or more polypeptides © 2011 Pearson Education, Inc.

Amino Acid Monomers Amino acids are organic molecules with carboxyl and amino groups Amino acids differ in their properties due to differing side chains, called R groups © 2011 Pearson Education, Inc.

Side chain (R group)  carbon Amino group Carboxyl group Figure 5.UN01 Side chain (R group)  carbon Figure 5.UN01 In-text figure, p. 78 Amino group Carboxyl group

Figure 5.16 The 20 amino acids of proteins. Nonpolar side chains; hydrophobic Side chain (R group) Glycine (Gly or G) Alanine (Ala or A) Valine (Val or V) Leucine (Leu or L) Isoleucine (Ile or I) Methionine (Met or M) Phenylalanine (Phe or F) Tryptophan (Trp or W) Proline (Pro or P) Polar side chains; hydrophilic Serine (Ser or S) Threonine (Thr or T) Cysteine (Cys or C) Tyrosine (Tyr or Y) Asparagine (Asn or N) Glutamine (Gln or Q) Figure 5.16 The 20 amino acids of proteins. Electrically charged side chains; hydrophilic Basic (positively charged) Acidic (negatively charged) Aspartic acid (Asp or D) Glutamic acid (Glu or E) Lysine (Lys or K) Arginine (Arg or R) Histidine (His or H)

Amino Acid Polymers Amino acids are linked by peptide bonds A polypeptide is a polymer of amino acids Polypeptides range in length from a few to more than a thousand monomers Each polypeptide has a unique linear sequence of amino acids, with a carboxyl end (C-terminus) and an amino end (N-terminus) © 2011 Pearson Education, Inc.

Amino end (N-terminus) Carboxyl end (C-terminus) Figure 5.17 Peptide bond New peptide bond forming Side chains Figure 5.17 Making a polypeptide chain. Back- bone Peptide bond Amino end (N-terminus) Carboxyl end (C-terminus)

Protein Structure and Function A functional protein consists of one or more polypeptides precisely twisted, folded, and coiled into a unique shape © 2011 Pearson Education, Inc.

(b) A space-filling model Figure 5.18 Groove Groove Figure 5.18 Structure of a protein, the enzyme lysozyme. (a) A ribbon model (b) A space-filling model

A protein’s structure determines its function The sequence of amino acids determines a protein’s three-dimensional structure A protein’s structure determines its function © 2011 Pearson Education, Inc.

Antibody protein Protein from flu virus Figure 5.19 Antibody protein Protein from flu virus Figure 5.19 An antibody binding to a protein from a flu virus.

Four Levels of Protein Structure The primary structure of a protein is its unique sequence of amino acids Secondary structure, found in most proteins, consists of coils and folds in the polypeptide chain Tertiary structure is determined by interactions among various side chains (R groups) Quaternary structure results when a protein consists of multiple polypeptide chains Animation: Protein Structure Introduction © 2011 Pearson Education, Inc.

Primary structure of transthyretin Figure 5.20a Primary structure Amino acids Amino end Primary structure of transthyretin Figure 5.20 Exploring: Levels of Protein Structure Carboxyl end

Primary structure is determined by inherited genetic information Primary structure, the sequence of amino acids in a protein, is like the order of letters in a long word Primary structure is determined by inherited genetic information Animation: Primary Protein Structure © 2011 Pearson Education, Inc.

Transthyretin protein Figure 5.20b Secondary structure Tertiary structure Quaternary structure  helix Hydrogen bond  pleated sheet  strand Figure 5.20 Exploring: Levels of Protein Structure Transthyretin protein Hydrogen bond Transthyretin polypeptide

The coils and folds of secondary structure result from hydrogen bonds between repeating constituents of the polypeptide backbone Typical secondary structures are a coil called an  helix and a folded structure called a  pleated sheet For the Cell Biology Video An Idealized Alpha Helix: No Sidechains, go to Animation and Video Files. For the Cell Biology Video An Idealized Alpha Helix, go to Animation and Video Files. For the Cell Biology Video An Idealized Beta Pleated Sheet Cartoon, go to Animation and Video Files. For the Cell Biology Video An Idealized Beta Pleated Sheet, go to Animation and Video Files. Animation: Secondary Protein Structure © 2011 Pearson Education, Inc.

 strand, shown as a flat arrow pointing toward the carboxyl end Figure 5.20c Secondary structure  helix Hydrogen bond  pleated sheet  strand, shown as a flat arrow pointing toward the carboxyl end Figure 5.20 Exploring: Levels of Protein Structure Hydrogen bond

Figure 5.20d Figure 5.20 Exploring: Levels of Protein Structure

Tertiary structure is determined by interactions between R groups, rather than interactions between backbone constituents These interactions between R groups include hydrogen bonds, ionic bonds, hydrophobic interactions, and van der Waals interactions Strong covalent bonds called disulfide bridges may reinforce the protein’s structure Animation: Tertiary Protein Structure © 2011 Pearson Education, Inc.

Transthyretin polypeptide Figure 5.20e Tertiary structure Transthyretin polypeptide Figure 5.20 Exploring: Levels of Protein Structure

Disulfide bridge Hydrogen bond Figure 5.20f Hydrogen bond Hydrophobic interactions and van der Waals interactions Disulfide bridge Ionic bond Figure 5.20 Exploring: Levels of Protein Structure Polypeptide backbone

Transthyretin protein (four identical polypeptides) Figure 5.20g Quaternary structure Transthyretin protein (four identical polypeptides) Figure 5.20 Exploring: Levels of Protein Structure

Heme Iron  subunit  subunit  subunit  subunit Hemoglobin Figure 5.20i Heme Iron  subunit  subunit  subunit Figure 5.20 Exploring: Levels of Protein Structure  subunit Hemoglobin

Figure 5.20j Figure 5.20 Exploring: Levels of Protein Structure

Quaternary structure results when two or more polypeptide chains form one macromolecule Collagen is a fibrous protein consisting of three polypeptides coiled like a rope Hemoglobin is a globular protein consisting of four polypeptides: two alpha and two beta chains Animation: Quaternary Protein Structure © 2011 Pearson Education, Inc.

Sickle-Cell Disease: A Change in Primary Structure A slight change in primary structure can affect a protein’s structure and ability to function Sickle-cell disease, an inherited blood disorder, results from a single amino acid substitution in the protein hemoglobin © 2011 Pearson Education, Inc.

Secondary and Tertiary Structures Sickle-cell hemoglobin Figure 5.21 Secondary and Tertiary Structures Primary Structure Quaternary Structure Red Blood Cell Shape Function Normal hemoglobin Molecules do not associate with one another; each carries oxygen. 1 2 3 4 Normal hemoglobin 5   subunit  10 m 6 7   Exposed hydrophobic region Sickle-cell hemoglobin Molecules crystallize into a fiber; capacity to carry oxygen is reduced. 1 2 Figure 5.21 A single amino acid substitution in a protein causes sickle-cell disease. 3 4 Sickle-cell hemoglobin 5  6  10 m  subunit 7  

Figure 5.21a Figure 5.21 A single amino acid substitution in a protein causes sickle-cell disease. 10 m

Figure 5.21b Figure 5.21 A single amino acid substitution in a protein causes sickle-cell disease. 10 m

What Determines Protein Structure? In addition to primary structure, physical and chemical conditions can affect structure Alterations in pH, salt concentration, temperature, or other environmental factors can cause a protein to unravel This loss of a protein’s native structure is called denaturation A denatured protein is biologically inactive © 2011 Pearson Education, Inc.

n a tu r a t i De on Normal protein Re Denatured protein on n a a t i Figure 5.22 n a tu r a t De i on Figure 5.22 Denaturation and renaturation of a protein. Normal protein Re on Denatured protein n a t u r a t i

Protein Folding in the Cell It is hard to predict a protein’s structure from its primary structure Most proteins probably go through several stages on their way to a stable structure Chaperonins are protein molecules that assist the proper folding of other proteins Diseases such as Alzheimer’s, Parkinson’s, and mad cow disease are associated with misfolded proteins © 2011 Pearson Education, Inc.