Lesson 6-1: Parallelogram

Slides:



Advertisements
Similar presentations
G.9 Quadrilaterals Part 1 Parallelograms Modified by Lisa Palen.
Advertisements

Quadrilaterals and Other Polygons
What am I?.
Quadrilateral Venn Diagram
Section 8.6 Identify Special Quadrilaterals. Rhombus Quadrilaterals Parallelograms KitesTrapezoids Rectangle Square Isosceles Trapezoid Right Trapezoid.
Special Quadrilaterals
Lesson 6-1: Parallelogram
Quadrilaterals Project
Advanced Geometry 5.4 / 5 Four Sided Polygons /  
 Properties of Quadrilaterals Learner Objective: I will solve problems using properties 
 of special.
Jose Pablo Reyes. Polygon: Any plane figure with 3 o more sides Parts of a polygon: side – one of the segments that is part of the polygon Diagonal –
Introduction There are many kinds of quadrilaterals. Some quadrilaterals are parallelograms; some are not. For example, trapezoids and kites are special.
Quadrilateral Proofs.
1.6 Classifying Quadrilaterals
Proving That Figures Are Special Quadrilaterals
Unit 4: Polygons.
Objectives :  Recognize polygons  Name polygons  Recognize convex polygons  Find diagonals of a polygon  Identify special types of quadrilaterals.
Classifying Quadrilaterals
Geometry Mr. Zampetti Unit 3, Day 4
Geometry Notes Lesson 4.1B Special Quadrilaterals.
Name That Quadrilateral  Be as specific as possible.  Trapezoid.
Lesson 6-1. Warm-up Solve the following triangles using the Pythagorean Theorem a 2 + b 2 = c √3.
Proof Geometry.  All quadrilaterals have four sides.  They also have four angles.  The sum of the four angles totals 360°.  These properties are.
Types of Quadrilaterals (4-sided figures)
 Parallelograms Parallelograms  Rectangles Rectangles  Rhombi Rhombi  Squares Squares  Trapezoids Trapezoids  Kites Kites.
Final Exam Review Chapter 8 - Quadrilaterals Geometry Ms. Rinaldi.
Kite Quadrilateral Trapezoid Parallelogram Isosceles Trapezoid Rhombus Rectangle Square Math 3 Hon – Unit 1: Quadrilateral Classifications.
Proving Properties of Special Quadrilaterals
Warm-Up ABCD is a parallelogram. Find the length of BC. A B C D 5x + 3 3x + 11.
Special Quadrilaterals
2/9/15 Unit 8 Polygons and Quadrilaterals Special Parallelograms
Bell Ringer Lesson 6-4: Rhombus & Square 1. 2 Rhombi Rectangles & Squares.
Lesson 6-3: Rectangles 1 Lesson 6-3 Rectangles. Lesson 6-3: Rectangles 2 Rectangles Opposite sides are parallel. Opposite sides are congruent. Opposite.
WARM UP—find your new seat * TAKE OUT your homework ** Review for a quiz—5 min silent.
A QUADRALATERAL WITH BOTH PAIRS OF OPPOSITE SIDES PARALLEL
2.19 Classifying Parallelograms
Objectives To identify any quadrilateral, by name, as specifically as you can, based on its characteristics.
Parallelograms have Properties Click to view What is a parallelogram? A parallelogram is a quadrilateral with both pairs of opposite sides parallel.
Chapter 8 Quadrilaterals. Section 8-1 Quadrilaterals.
Unit 6-1:Classifying Quadrilateral Parallelogram: A parallelogram is a quadrilateral with both pairs of opposite sides
Midsegments of a Triangle
Special Parallelograms
Obj: SWBAT identify and classify quadrilaterals and their properties
Classify Parallelograms 1 Ringer Bell 1) 2) 12/10/09.
Geometry 6-4 Properties of Rhombuses, Rectangles, and Squares.
Special Quadrilaterals Properties of Kites & Trapezoids.
Classifying Quadrilaterals Learning Target: I can classify quadrilaterals.
Properties of Quadrilaterals
A D B C Definition: Opposite Sides are parallel.
Geometry SECTION 6: QUADRILATERALS. Properties of Parallelograms.
Lesson 6-4: Rhombus & Square
Quadrilaterals Four sided polygons.
Special Quadrilaterals. KITE  Exactly 2 distinct pairs of adjacent congruent sides  Diagonals are perpendicular  Angles a are congruent.
5.4 Quadrilaterals Objectives: Review the properties of quadrilaterals.
Parallelogram Rectangle Rhombus Square Trapezoid Kite
Quadrilaterals Four sided polygons Non-examples Examples.
Quadrilaterals By Austin Reichert. Two Diagonals!!! First comes the Trapezium!!! ◦No sides are parallel!
Quadrilateral Foldable!
7/1/ : Properties of Quadrilaterals Objectives: a. Define quadrilateral, parallelogram, rhombus, rectangle, square and trapezoid. b. Identify the.
Do Now: List all you know about the following parallelograms.
QUADRILATERALS.
POLYGONS ( except Triangles)
Unit 2 – Similarity, Congruence, and Proofs
G.9 Quadrilaterals Part 1 Parallelograms Modified by Lisa Palen.
6-4 Properties of Rhombuses, Rectangles, and Squares
Chapter 6 Quadrilaterals
Trapezoid Special Notes!
Lesson 6-3 Rectangles Lesson 6-3: Rectangles.
Parallelogram Rectangle Rhombus Square Trapezoid Kite
Lesson 6-3 Rectangles Lesson 6-3: Rectangles.
Presentation transcript:

Lesson 6-1: Parallelogram Definition: A quadrilateral whose opposite sides are parallel. C B A D Symbol: a smaller version of a parallelogram Naming: A parallelogram is named using all four vertices. You can start from any one vertex, but you must continue in a clockwise or counterclockwise direction. For example, the figure above can be either ABCD or ADCB. Lesson 6-1: Parallelogram

Rectangles Definition: A rectangle is a parallelogram with four right angles. A rectangle is a special type of parallelogram. Thus a rectangle has all the properties of a parallelogram. Opposite sides are parallel. Opposite sides are congruent. Opposite angles are congruent. Consecutive angles are supplementary. Diagonals bisect each other. Lesson 6-3: Rectangles

Properties of Rectangles Theorem: If a parallelogram is a rectangle, then its diagonals are congruent. Therefore, ∆AEB, ∆BEC, ∆CED, and ∆AED are isosceles triangles. E D C B A Converse: If the diagonals of a parallelogram are congruent , then the parallelogram is a rectangle. Lesson 6-3: Rectangles

Lesson 6-4: Rhombus & Square Definition: A rhombus is a parallelogram with four congruent sides. ≡ ≡ Since a rhombus is a parallelogram the following are true: Opposite sides are parallel. Opposite sides are congruent. Opposite angles are congruent. Consecutive angles are supplementary. Diagonals bisect each other Lesson 6-4: Rhombus & Square

Properties of a Rhombus Theorem: The diagonals of a rhombus are perpendicular. Theorem: Each diagonal of a rhombus bisects a pair of opposite angles. Lesson 6-4: Rhombus & Square

Lesson 6-4: Rhombus & Square Definition: A square is a parallelogram with four congruent angles and four congruent sides. Since every square is a parallelogram as well as a rhombus and rectangle, it has all the properties of these quadrilaterals. Opposite sides are parallel. Four right angles. Four congruent sides. Consecutive angles are supplementary. Diagonals are congruent. Diagonals bisect each other. Diagonals are perpendicular. Each diagonal bisects a pair of opposite angles. Lesson 6-4: Rhombus & Square

Lesson 6-5: Trapezoid & Kites Definition: A quadrilateral with exactly one pair of parallel sides. The parallel sides are called bases and the non-parallel sides are called legs. Trapezoid Base Leg An Isosceles trapezoid is a trapezoid with congruent legs. Isosceles trapezoid Lesson 6-5: Trapezoid & Kites

Properties of Isosceles Trapezoid 1. Both pairs of base angles of an isosceles trapezoid are congruent. 2. The diagonals of an isosceles trapezoid are congruent. B A Base Angles D C Lesson 6-5: Trapezoid & Kites

Lesson 6-1: Parallelogram Kites A quadrilateral with two pairs of adjacent sides congruent and no opposite sides congruent. **Diagonals are perpendicular** Lesson 6-1: Parallelogram