Spatial & Energy resolutions (exp.& MC) for the Axial HPD-PET concept with YAP and LYSO crystals from the thesis works of Ignazio Vilardi Anna Palasciano.

Slides:



Advertisements
Similar presentations
Topic 8. Gamma Camera (II)
Advertisements

1 Proton detection with the R3B calorimeter, two layer solution IEM-CSIC sept report MINISTERIO DE EDUCACIÓN Y CIENCIA CONSEJO SUPERIOR DE INVESTIGACIONES.
Advanced GAmma Tracking Array
1 Continuous Scintillator Slab with Microchannel Plate PMT for PET Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat 2, Fukun Tang 2,
PET Design: Simulation Studies using GEANT4 and GATE - Status Report - Martin Göttlich DESY.
1 MCP PET Simulation # of photon detected at photocathode 2. Efficiency & Material effect # of generated photon at 511keV 26000/MeV * =
Tests of scintillators CsI, CsI(Na), BGO, NaI(Tl) CsI(Tl)
Observation of Fast Scintillation of Cryogenic PbI 2 with VLPCs William W. Moses, 1* W.- Seng Choong, 1 Stephen E. Derenzo, 1 Alan D. Bross, 2 Robert Dysert,
Tagger Electronics Part 1: tagger focal plane microscope Part 2: tagger fixed array Part 3: trigger and digitization Richard Jones, University of Connecticut.
ipno.in2p3.fr Milano - October 2006IPNO-RDD-Jean Peyré1 Measurements of CsI(Tl) Crystals with PMT and APD Jean Peyré Milano - Oct 2006.
1 A Design of PET detector using Microchannel Plate PMT with Transmission Line Readout Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat.
Nustar/crystal simulations B. Genolini Crystal: CsI(Tl) (Saint Gobain), wrapped with reflector (VM2000, Tyveck?) Geometry:
Crystals and related topics J. Gerl, GSI NUSTAR Calorimeter Working Group Meeting June 17, 2005 Valencia.
1 Scintillation light yield of Ce-doped LuAP and LuYAP pixel crystals A.J. Wojtowicz 1), W. Drozdowski 1), M. Ptaszyk 1) Z. Galazka 2), J.L. Lefaucheur.
1 Light Collection  Once light is produced in a scintillator it must collected, transported, and coupled to some device that can convert it into an electrical.
Optimization of LSO for Time-of-Flight PET
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
1 The X-HPD: Development of a large spherical hybrid photodetector A.Braem +, C. Joram +, J. Séguinot +, L. Pierre *, P. Lavoute * + CERN, Geneva (CH)
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
The Design of Barrel Electromagnetic Calorimeter (BEMC) October Lu Jun-guang.
P. Lecoq CERN 1 October 2012 NSS-MIC Annaheim, October 30th, 2012 How Photonic Crystals can improve scintillator timing resolution Paul Lecoq, E. Auffray,
Department of Radiology UNIVERSITY OF PENNSYLVANIA 1 Investigation of LaBr 3 Detector Timing Resolution A.Kuhn 1, S. Surti 1, K.S. Shah 2, and J.S. Karp.
February 14, 2013 Study of a Cherenkov TOFPET modulePeter Križan, Ljubljana Samo Korpar, Rok Dolenec, Peter Križan, Rok Pestotnik, Aleš Stanovnik J. Stefan.
Fundamental Limits of Positron Emission Tomography
Blacksburg - October 14, 2006 LENS - The Lattice Architecture Jeff Blackmon (ORNL) on behalf of LENS Collaboration 8% Indium-loaded liquid scintillator.
TU Delft IRI-ST Inorganic Scintillators in Medical-imaging Detectors C.W.E. van Eijk A msterdam, 9 September 2002.
Tests WLS - Readout axial PET - Bari - Janvier 2007 AXIAL PET - HPD AXIAL COORDINATE RECONSTRUCTION WITH WLS STRIPS
Nuclear Medicine: Planar Imaging and the Gamma Camera Katrina Cockburn Nuclear Medicine Physicist.
We report the result of a beam test on a prototype of Astronomical hard X-ray/soft gamma-ray Polarimeter, PoGO (Polarized Gamma-ray Observer). PoGO is.
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
work for PID in Novosibirsk E.A.Kravchenko Budker INP, Novosibirsk.
Optimization of Detectors for Time of Flight PET Marek Moszyński, Tomasz Szczęśniak, Soltan Institute for Nuclear Studies, Otwock-Świerk, Poland.
C. Joram - HPD-PET team - Bari (Italy), 17 January 2007 The 3D Axial PET Concept Christian Joram, CERN, PH-Department Positron Emission Tomography - Principle.
Increase in Photon Collection from a YAP:Ce Matrix Coupled to Wave Lenght Shifting Fibres N. Belcari a, A. Del Guerra a, A. Vaiano a, C. Damiani b, G.
Hadron Calorimeter HCAL-J GEp Electron Calorimeter BigCal Hadron Calorimeter 1 G. Franklin, Carnegie Mellon University 10/13/2011.
1 Geant4 Simulation :MCP PET 4’’(102mm) Scintillator ( LSO) 4’’(102mm) 10mm Glass( Borosilicate) PhotocathodeI(Carbon) Space(Vacuum) MCP(Alumina) Space(Vacumm)
16. January 2007Status Report On Compton Imaging Projects 1 Status Of Compton Imaging Projects Carried Out In The CIMA Collaboration HPD Brain PET Meeting.
Development of a Gamma Camera Based on an 88 Array of LaBr3(Ce) Scintillator Pixels Coupled to a 64-channel Multi-anode PMT Hidetoshi Kubo, K.Hattori,
P. Lecoq CERN 1 November 2010 Workshop on Timing Detectors - Cracow 2010 Time of Flight: the scintillator perspective Paul Lecoq CERN, Geneva.
Enhancing InBeam PET with single Photon (Compton) Detection CERN September 2nd 2008 VALENCIA GROUP, IFIMED José M. Benlloch (PET hardware, speaker) José.
Timing Studies of Hamamatsu MPPCs and MEPhI SiPM Samples Bob Wagner, Gary Drake, Patrick DeLurgio Argonne National Laboratory Qingguo Xie Department of.
MCP-PET: Geant4 Simulation Geometry Implementations 1. Similar to the last report (polished surface). Scintillator : LSO, LaBr3 # of layers : 5 -> 4 Area.
Scintillators suitable for PET applications must be characterized by a high efficiency for gamma-ray detection, determined by a high density and atomic.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
1 Nuclear Medicine SPECT and PET. 2 a good book! SR Cherry, JA Sorenson, ME Phelps Physics in Nuclear Medicine Saunders, 2012.
Peter Dendooven LaBr 3 and LYSO monolithic crystals coupled to photosensor arrays for TOF-PET Physics for Health in Europe Workshop February 2-4, 2010,
Collection of Photoelectrons from a CsI Photocathode in Triple GEM Detectors C. Woody B.Azmuon 1, A Caccavano 1, Z.Citron 2, M.Durham 2, T.Hemmick 2, J.Kamin.
1 Plannar Active Absorber Calorimeter Adam Para, Niki Saoulidou, Hans Wenzel, Shin-Shan Yu Fermialb Tianchi Zhao University of Washington ACFA Meeting.
P HOTON Y IELD DUE TO S CINTILLATION IN CF4 Bob Azmoun, Craig Woody ( BNL ) Nikolai Smirnov ( Yale University )
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
WP 22 – SciFi Development and Characterisation of Inorganic Scintillating Fibers Made of LuAG:Ce and LYSO:Ce S. Diehl 1, R. Novotny 1, Aubry Nicolas 2.
1 Development of a Large Area Photodetector with a Fast Phosphor Anode Toru Iijima Kobayashi-Maskawa Institute Nagoya University Open Meeting for the Hyper-Kamiokande.
Simulations in Medical Physics Y. TOUFIQUE*, R.CHERKAOUI EL MOURSLI*, M.KACI**, G.AMOROS**, *Université Mohammed V –Agdal, Faculté des Sciences de Rabat,
Hybrid Detector(s) for Complete Gamma Ray Spectroscopy S. S. Bhattacharjee, R Raut, S S Ghugre, A K Sinha UGC-DAE Consortium For Scientific Research, Kolkata.
Gamma Spectrometry beyond Chateau Crystal J. Gerl, GSI SPIRAL 2 workshop October 5, 2005 Ideas and suggestions for a calorimeter with spectroscopy capability.
P. Lecoq CERN2 February ENVISION WP2 Meeting CERN Group contribution to ENVISION WP2 Paul Lecoq CERN, Geneva.
Positron emission tomography without image reconstruction
Performance of scintillation pixel detectors with MPPC read-out and digital signal processing Mihael Makek with D. Bosnar, V. Gačić, L. Pavelić, P. Šenjug.
from Saint Gobain studies
Ultra fast SF57 based SAC M. Raggi Sapienza Università di Roma
Development of a High Precision Axial 3-D PET for Brain Imaging
Inorganic Scintillators in Medical-imaging Detectors C. W. E
Geant4 Simulation :MCP PET
PHOTON DETECTION AND LOCALIZATION WITH THE
LSO/LYSO Crystals for Future High Energy Physics Experiments
A.Takada, A.Takeda, T.Tanimori
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
MCP PET Simulation (7) – Pixelated X-tal
BESIII TOF Digitization
Status Report on MCP PET Simulation
Presentation transcript:

Spatial & Energy resolutions (exp.& MC) for the Axial HPD-PET concept with YAP and LYSO crystals from the thesis works of Ignazio Vilardi Anna Palasciano Francesca Ciocia

The 3D PET cameras Standard radial concept Many rings of crystal–photodetector blocks radially displaced Lc =1.5-3cm New 3D axial HPD-PET concept Arrays of long (Lc~10-15 cm) crystal bars read out at both sides by segmented HPDs Concept made possible by CERN development of rectangular segmented 5‘’ HPDs with integrated self-triggering electronics p PMTs axis

A HPD-PET CAMERA MODULE Array of 208 scintill.s (LSO, LYSO, YAP, LaBr 3, n= ) 16x13 crystals (3.2[Rx]x3.2[Ry]x150[Lc] mm 3 ) t x =51mm, t y =42mm  t X,Y >3· a (LSO)   2   ⊥ )~ 90% with spacing: 4x4 mm 2 Rx = 64 mm, Ry = 52 mm "Proximity focused“ HPDs sapphire window (n~1.8): (better light transmission) (crystal-window refractive indices matching) optical transport image 1 : 1 segmented (4x4 mm 2 ) silicon detector pads (each crystal readout by its pad, no cross-talk) each pad with integrated lecture electronics (2 VATA-Gp5) Gain HPD : ~ (U op = 12 kV ) or (U op = 20 kV) RxRx RyLc

“Reference Radial PET”: The High Resolution Research Tomograph (HRRT) (CTI, MPI, Karolinska …) AFOV 25 cm 31 cm 8 panels with 9  13 blocks 2  64 crystals per block crystals 2.1  2.1x7.5mm (20x20 mm 2 ) PMTs PMT2PMT1 LSO  = 7 ns 8  8 matrix (2x2 cm 2 )  4PMTs  z (FWHM) ~ 5 mm  V= (FWHM) ~ 20 mm 3 Lc =15mm ~ 1 a   2  ( ⊥ )~ 53%  E/E (511 keV) ~ 17 % Heavy electronics (PSD) 7.5 K. Wienhard et al., IEEE Trans. Nucl. Sci. 49 (2002) 104–10   Lc ANGER LOGIC: a block seen by 4 PMTs CM of signals in 4 PMTs   interac. point (x,y) of  DOI (z) from PHOSWICH tecnique Pulse Shape Discrimin. (PSD) x y z

Criteria to be taken into account: light yield, absorption length, photofraction, self absorption, decay time, availability, machinability, price. YAP:CeLSO:CeLuAP:CeLaBr 3 :Ce Density ρ (g/cm 3 ) Effective atomic charge Z Scintillation light output (photons / MeV) ~10000~61000 wavelength max of max. emission (nm) Refractive index n at max ~1.88 Bulk light abs. length bulk (cm) at max ~20~40 Principal decay time (ns) ±5 Mean γ atten. length a at 511keV (mm) ~20 Photo fraction at 511 keV (%)4, Energy resolution (FWHM) at 663 keV Inorganic Scintillation crystals BGO ~ ~ ~ LSO (LYSO) is the most interesting crystal scintillator : fast (40 ns), short att. length (~12mm) at 511keV, high photofraction (32%), not hygroscopic, but high intrinsic energy resolution ( ~ 5 % FWHM)

x,y from fired scintillator σ(x,y) = 3.2 mm/√12= 0.92 mm  x,  y (FWHM) = 2.2 mm z (DOI) from the ratio of the photoelectrons detected at the two crystal ends σ(z) linked to the scint. choice Reduced # of photodet., scint., electr. (12 module PET: only 24 HPDs) No limit to module radial (x,y) dimension  higher efficiency Double scatt. events in one module (Compton-photoel.) reconstruction  higher efficiency HPD2 HPD1 x y z x 4 mm 2 Si ‘pads’ centred on crystal matrix 1) ADVANTAGES OF THE AXIAL HPD-PET CONCEPT High Granularity  exact reconstruction of the  interaction point (no parallax error) (Rx) (Ry) 

COMPTON + PHOTOELECTRIC events- ~ 25% Compton events (50 keV [energy cut] < E < 170 keV) followed by a photoelectric one in the same module can unambiguously be reconstructed possibility to reconstruct the int. point of part of  ’s that suffers a double (Compton + photoelectric) event in the same module 2) ADVANTAGES OF THE AXIAL HPD-PET CONCEPT detection efficiency increases but spatial (DOI) resolution worsens

HPD2 HPD1 σ z, σ E /E, σ t : (only statistical) Lc, eff, No: KEY PARAMETERS OF THE HPD-PET CONCEPT Z Lc: crystal length eff : attenuation length of scint. photons 1/ eff = 1/( bulk * cos  ) + c’/(c abs ) No: light yield ≡ p.e.’s (511keV  ) in a Lc ~ 0 crystal ( n ph /keV, sci.ph.transport, q.e. & wind. of photodet. ) c abs  a) crystal axial length (Lc) worsens all resolutions limit of Lc: 10 ~ 15 cm c) contrasting effects of eff on σ z & σ E /E, σ t  optimize eff value by wrapping or coating the crystal lateral surface   b) light yield (No) improves all resolutions

PROOF of the HPD-PET CONCEPT with YAP and LYSO crystals and PMTs  BaF 2 (used with a 22 Na source)  Pb collimator Pb + source  YAP (Preciosa Co) LYSO (Photonic Materials) (3.2 x 3.2 x mm 3 ) PMT H (  =8mm, n w = 1.47,bialkali ) B8850 Quantacon(  =5cm,n w = 1.47,bialkali )  linear translator M-511( Phys.Instrum. )

polished 3x3x100 mm 3 YAP-LYSO comparison z=1 cm z = 5 cm z =9 cm YAP+H Q L +Q R (5cm)= 1692 ch LYSO+H Q L +Q R (5cm)= 2295 ch 22 Na source photoelectric peak (511 keV) Compton ΔE/E(FWHM) ~ 10% LYSO produces more light (pe’s) than YAP LYSO has a higher photofraction, lower energy resolution than YAP ~ 14%

eff in polished(n 2 =1) 3x3x100 mm 3 YAP-LYSO LYSO = 42.6±0.9 cm YAP = 20.8±0.4 cm QLQL LYSO more transparent (higher eff than YAP) too high -eff values (poor  z ) both for LYSO and YAP exp(-z/ eff ), ≈ n 1 /n 2, n 1 /n W 1/z 2 ≈ n 1 /n W No/2

Crystal wrappings or metal-coatings change light attenuation length of a YAP (3.2 x 3.2 x 100 mm 3) best solution polished No/2 at z=0: N 0 (teflon) > N 0 (polished) (diffusing wrapping) eff (polished) / eff (teflon) = 1.9 possibility to tune eff value with metal coatings metal coating (n 2 ) reduces No QLQL

N O = 510±18 pe N O = 753±34 pe  E /E,  z,  tdc (z=5cm) in coated 10cm YAP & LYSO (511 keV) vs eff N O = 724±34 pe YAP LYSO a) statistical b) phenomen.

very l ow eff in a Lc=5 cm YAP with raw (smeared) lateral surfaces no exp behaviour of Q1 (fermi function) no coincident Q1-Q2 signals in a Lc = 10 cm YAP very low eff, but dependent with z  good  z but z-dependent, bad  E /E

crystal length worsens  z, does not influence much  E /E worse  z and  E /E values at lower E   very low eff (raw lat.surf) values  Lc limited, z-dep. of  z  z,  E /E in coated-smeared YAP & LYSO vs z, eff, Lc, E 

Geant4 simulations for YAP long crystals + PMTs I incident unpol. opt. photons A absorption R reflection T transmission D Lambertian diffusion S R diffuse reflect. (smear) S T diffuse transmiss. long and thin cylindrical crystal (n 1, N ph /keV) lat.surface: polished, smeared (  ), wrapped ( n wrap ), coated (n wrap,ik,t) polished bases coupled to PMTs (n win, t,q.e.) Polar diagram of reflected-refracted scintillation photons

n wrap n win n wrap does not change eff decreases No worsens  E /E,  z,  t (n win =1.47) (n wrap =1.0) n win decreases eff increases No improves  E /E,  z,  t * refr.ind.match *

absorption diffusion smearing absorp. & diffus. similar effects decrease eff (diff. increases No) improve  z worsen  E /E,  t smearing to be avoided (N 1 no more exp.)

Geant4 reproduction of exp. results YAP + H PMTs

Geant4 predictions for engraved crystals mechanical or laser ablation engravings engravings (effects similar to absorp.) decrease eff improve spatial resol. worsen energy-time resol. & high reproducibility to the N 0 and eff values of the many HPD-PET crystals

Full ring scanner A possible final configuration for a HPD-PET R = 170 mm 12 modules  =  34 cm Lc = 15 cm 2496 crystals 3. 2x3.2x150mm ” rect. HPDs det.Vol. 3834cm 3 det.depth 41mm  ~  TOT (LSO ) (%) ~ 8.5 (ph) (Co-rec)  TOT (LaBr 3 )(%) ~ 1.9 (ph) (Co-rec) xy z HRRT vs. HPD-PET 8 panels 9x13 blocks  =  31 cm AFOV = 25 cm crystals 2.1x2.1x7.5mm PMTs 2x2cm 2 det.Vol. 3962cm 3 det.depth 15mm  ~  TOT (LSO)(%) (exp) ~ 6.9 AFOV 25 cm 31 cm

HPD-PET (Lc=10cm) vs HRRT crystalnwnw No (pe) eff (cm)  z FWHM (mm)  E /E FWHM (%) HPD-PETHPD-PET exPexP YAP polish YAP teflon LYSO polish LYSO teflon MCMC YAP polish YAP teflon HRRTHRRT exPexP LSO 5 17