Plant Breeding and Propagation

Slides:



Advertisements
Similar presentations
Chapter 13 Genetic Engineering
Advertisements

By: Johnny M. Jessup Agriculture Teacher/FFA Advisor
Reproduction in Flowering Plants
Please answer the following question in the first section of Outline Do Now:
Genetics in Agriculture. Farming goals A need to improve air, water, and soil quality.
Genetically Engineering Plants Riyanda N G (10198) Vina E A (10221) Arini N (10268) Suluh N (10302)
Section 4.3: Reproductive Technologies SBI3U. Prenatal Testing Prenatal testing is a test performed on a fetus that looks for genetic abnormalities. The.
Chapter 13 Genetic Engineering
Vigyan Ashram Pabal. Plant Propagation New plant life starts with Simple seed Cuttings and Grafting Tissue culture.
Asexual Reproduction in Flowering Plants or Vegetative Propagation
Chapter 14 Plant Biotechnology I. Introduction A. Shrubs that "Glow in the Dark" B. Traditional and Modern Biotechnology II. Traditional Vegetative Propagation.
African Humid Tropics Regional Programme – World Agroforestry Centre 1 Vegetative Propagation methods - theory Ebenezar Asaah ICRAF-WCA/HT BP Yaounde,
BIOTECHNOLOGY AND GENETIC ENGINEERING IN VEGETABLE PRODUCTION Brittany Corey.
CHAPTER 13 GENETIC ENGINEERING
PLANT PROPAGATION Propagation The multiplication of a kind or species. Reproduction of a species.
Plant Tissue Culture Used for 1. Micropropagation 2. Regeneration
Asexual Reproduction in Plants
Genetic technology Unit 4 Chapter 13.
Ch. 13 Genetic Engineering
Chapter 15 – Genetic Engineering
DO NOW (front of notes) What do genes code for?
CHAPTER 13 – GENETIC ENGINEERING TEST REVIEW
Plant Propagation
REPRODUCTION SBI 3C: JANUARY ASEXUAL REPRODUCTION  New individual is produced from one parent plant only  Genetically identical to parent  Occurs.
Genetic Engineering Regular Biology. Selective Breeding  This is the process of allowing those organisms with specific characteristics to reproduce 
Biotechnology in Agriculture Chapter 11.
Unit H – Applied Genetics in Agriculture and Agriscience.
Unit Plant Science. Problem Area Reproduction in Plants.
Stern - Introductory Plant Biology: 9th Ed. - All Rights Reserved - McGraw Hill Companies Plant Breeding and Propagation Chapter 14 Copyright © McGraw-Hill.
Food supply as a limiting factor Chapter 37. Today’s lesson  Understand the concept of natural succession, land overuse, & deforestation  Discuss the.
Genetically Modified Organisms (GMOs) Any microorganism, plant or animal that has purposely had its genome altered using genetic engineering technology.
Chapter 13.  Breeding organisms for specific characteristics  Ex: Pedigree Dogs, livestock, horses, plants  Two Types of Selective Breeding: 1) Hybridization.
Reproduction in Flowering Plants
Methods to improve seeds 1. Selection – take individual plants and pick the best plants from them and plant their seeds. 2. Directed Breeding – cross.
Mitosis is the type of cell division that produces new cells for growth and to replace old cells that are worn out, damaged or dead. An application of.
Section 4-5 What is the future of evolution? Genetic Engineering.
Genetic Engineering. I. Changing the Living World A. Humans are the ones responsible for directing the change among domestic animals and plants. B. The.
Cloning and Genetic Engineering
GMO vs Selective breeding
CHAPTER 38 PLANT REPRODUCTION AND BIOTECHNOLOGY Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section B: Asexual Reproduction.
Plant Propagation By: Johnny M. Jessup Agriculture Teacher/FFA Advisor.
15.2 Plants in Agriculture By : James Quach. Food Plants  Plants are either eaten directly or indirectly either from animals that feed on grain or grass,
Plant Reproduction and Breeding Topic #3. Selective Breeding Selective breeding means that people have chosen specific plants with particular characteristics.
Sexual & Asexual Reproduction. Introduction  Plant reproduction is necessary for the survival and perpetuation of plant species.  Plants have the capability.
13.1 CHANGING THE LIVING WORLD 13.2 MANIPULATING DNA 13.3 CELL TRANSFORMATION 13.4 APPLICATION OF GENETIC ENGINEERING CH 13 GENETIC ENGINEERING.
 How are these organisms different?  Are they the same species?  Who is involved with making these variations?
? + =.
Genetic Engineering. Genetic engineering is defined as the manipulation or alteration of the genetic structure of a single cell or organism. This refers.
Chapter 13 Genetic Engineering Changing the Living World Humans use selective breeding, which takes advantage of naturally occurring genetic variation.
Bacterial Transformation Green Fluorescent Protein.
Genetically Modified Organisms. For centuries people have bred plants and animals to get the best characteristics: Taste Colour Size This has resulted.
Chapter 13 Genetics and Biotechnology 13.1 Applied Genetics.
Unit 17 Agriscience Plant Reproduction The reason plants do such a good job of surviving all the problem That the environment throws at them is that they.
Plant Propagation Creating New Plants. Sexual Reproduction (recap) Fusion of the pollen with the ovule to create an embryo found encased in a seed. Fusion.
Selective Breeding Definition: breeding or crossing of organisms with favorable traits –Allows the favorable allele to remain in the population Cats Domestic.
By: Aisha Shahbaz & Shikha Sharma. Everything we eat comes directly or indirectly from plants. An example of directly is fruits and vegetables. An example.
Sexual & Asexual Reproduction Vegetative Parts in Asexual Reproduction: Presentation 3 of 3.
Faculty of Science, School of Sciences, Natabua Campus Lautoka
Transgenic Plants.
Plant Reproduction/Propagation
Title: Clones in nature
MICROPROPAGATION.
GENETIC ENGINEERING Chapter 13.
13-1 Genetic Engineering.
Artifical Selection.
DNA Technology.
Use These Notes to Study for Your C13 &14 Test
Radhabai Kale Mahila Mahavidyalaya, Ahmednagar.
Frontiers of Biotechnology
Presentation transcript:

Plant Breeding and Propagation Chapter 14 Lecture Outline Plant Breeding and Propagation Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Outline Crop Plant Evolution Plant Breeding Plant Propagation Breeding Methods Using Sexually Compatible Germplasm Breeding Methods Using Sexually Incompatible Germplasm Plant Propagation Seed Propagation Asexual Plant Propagation

Crop Plant Evolution Approximately 250,000 living species of flowering plants Six species provide 80% of calories consumed by humans worldwide. Wheat, rice, corn, potato, sweet potato, and cassava Eight additional plants complete list of major crops grown for human consumption. Sugar cane, sugar beet, bean, soybean, barley, sorghum, coconut, and banana Plants domesticated by altering them genetically. Domesticated plant - Reproductive success depends on human intervention. Ongoing evolutionary process

Crop Plant Evolution Origins of Agriculture Agricultural practices arose independently in many parts of world. People began to domesticate plants in Near East (Iran) around 10,000 years ago. Domestication in Asia and New World 1,000 to 3,000 years later First crops were cereal grains. Root crops and legumes domesticated 1,000 to 2,000 years later. Followed by vegetables, then oil, fiber and fruit crops Plants for forage, decoration, and drugs first domesticated about 2,000 years ago.

Crop Plant Evolution Origins of Agriculture Regions of domestication

Potato tuber diversity Plant Breeding Plant breeding is accelerated evolution guided by humans rather than nature. Breeders replace natural selection with human selection to modify plant genetics. Primary goal of plant- breeding programs is improved yield, with disease resistance, pest resistance, and stress tolerance contributing to yield. Genetic variation provides foundation for improving plants through breeding. Potato tuber diversity

Plant Breeding Breeding Methods Using Sexually Compatible Germplasm Strategies Self-pollinating plant - Capable of fertilizing itself Tend to be highly homogeneous - Genes come from same parent. Significant inbreeding Wheat, rice, oats, barley, peas, tomatoes, peppers, some fruit trees: apricots, nectarines, citrus Pure-line selection: Seeds collected from several plants. Seeds from individual plant grown in same row. Most desirable row selected.

Plant Breeding Breeding Methods Using Sexually Compatible Germplasm Strategies Cross-pollinating plant - Must be fertilized from other individuals Tend to be highly heterozygous Corn, rye, alfalfa, clover and most fruit, nuts and vegetables Mass selection - Many plants from a population selected, and seeds from these plants used to create next generation. Seeds from the best plants chosen and propagated, for many generations.

Plant Breeding Breeding Methods Using Sexually Compatible Germplasm Strategies Outcrossing in cross-pollinated crops often results in hybrid vigor (heterosis). Self pollination of cross-pollinating plants results in inbreeding depression. Due to expression of deleterious recessive alleles Modern breeders force self-pollination in cross-pollinated species to create inbred lines in which deleterious alleles eliminated. Selected inbred lines crossed to produce hybrid seed. Successful in corn Heirloom varieties grown as open-pollinated populations. Genetic variability allows crop production under different environmental conditions.

Plant Breeding Breeding Methods Using Sexually Compatible Germplasm Impossible to improve population if there is no genetic variability for trait. Germplasm - Sum total of a plant’s genes Current agricultural varieties are often genetically uniform, and thus may not be good sources of new genetic variability. Homogeneity makes them vulnerable to pest outbreaks. Gene banks established to meet current and future demands of plant genetic diversity. Seeds or other propagules put into long-term storage.

Plant Breeding Breeding Methods Using Sexually Incompatible Germplasm Using sexually incompatible germplasm - Across species boundaries Protoplast fusion Cells of each species grown in liquid nutrient solution. Cell walls chemically stripped to produce protoplasts. Protoplasts of two species mixed together and stimulated, with aid of an electric current or chemical solution, to fuse with each other. Grow hybrid fusions by tissue culture. Form somatic hybrids - New plants that carry genes from two distantly related species Few successes

Plant Breeding Breeding Methods Using Sexually Incompatible Germplasm Transgenic plants - Produced by inserting genes from virtually any organism into plants Recombinant DNA technology used. Restriction enzymes from bacteria cut DNA into fragments with one DNA strand longer than other, creating sticky ends. Sticky ends base- pair with tail of other fragments cut with same enzyme.

Plant Breeding Breeding Methods Using Sexually Incompatible Germplasm Transgenic plants Plasmids commonly used as cloning vectors. Plasmid - Small circular bacterial DNA capable of independent replication To clone gene: A bacteria plasmid and a gene of interest from foreign DNA cut by restriction enzymes. Gene becomes inserted into plasmid. Transformation - Bacteria, Escherichia coli, stimulated to take up plasmid. Bacteria multiply.

Plant Breeding Breeding Methods Using Sexually Incompatible Germplasm To clone gene:

Plant Breeding Breeding Methods Using Sexually Incompatible Germplasm After cloning, gene inserted into plant cells via transformation: Plasmids removed from E. coli. Same restriction enzymes used to cut out gene. Plant is transformed with new gene. Two techniques used: Agrobacterium tumefaciens used to insert transfer DNA (T-DNA) that contains gene of interest from its plasmids into plant’s chromosomes. Particle guns - Shoot DNA into plant tissue Tungsten or gold pellets coated with cloned gene shot into plant cells. Process of how this works is a mystery.

Plant Breeding Breeding Methods Using Sexually Incompatible Germplasm Transformation of plant by Agrobacterium tumefaciens:

Plant Breeding Breeding Methods Using Sexually Incompatible Germplasm Steps in making a transgenic plant:

Plant Breeding Breeding Methods Using Sexually Incompatible Germplasm Pros of transgenic plants Transgenic crops environmentally friendly. Farmers can use fewer and less noxious chemicals for crop production. Cons of transgenic plants Unanswered questions need to be answered: Effects on non-target organisms, such as beneficial insects, worms or birds? Effects on humans eating transgenic crops? Allergic reaction to transgene protein product? Movement of herbicide-resistance genes into weeds? Evolution of insects to be able to eat transgenic plants? Encouragement of farmers to head farther away from sustainable agricultural farming.

Plant Propagation Seed Propagation Hybrid varieties often grown from seed produced by crosses between two inbred parents. Produce highly variable population Corn Inbred line varieties typically grown from seed and allowed to self-pollinate. Produce plants nearly identical to parents

Plant Propagation Seed Propagation Mature seeds harvested and stored in a controlled environment. Viability best when seeds maintained in cool, dry storage. In preparation for planting, seeds dusted with a protectant, such as fungicide. Seeds planted in a suitable bed. Moist soil to allow seeds to imbibe water Dry enough to maintain suitable oxygen levels

Plant Propagation Asexual Plant Propagation Asexual propagation - Uses vegetative parts Crown division - Plant separated into several pieces, each with crown portion and roots. Crown division of daylily

Plant Propagation Asexual Plant Propagation Cuttings - Propagation from parts of plants If stem used, produces adventitious roots. Cells near the wound must dedifferentiate and create a new meristematic region. Sometimes rooting is stimulated by auxin. Identical copies of valuable plants can be made. Disadvantage - Diseases carried by mother plant propagated.

Plant Propagation Asexual Plant Propagation Layering Works well for some plants that are not easy to propagate by cuttings. Tip layering - Tips bent until touch ground, and then covered with soil. Roots form on buried stem. Tip layering Blackberries, boysenberries Air layering - Branch or main stem wounded or girdled to produce roots. Tropical trees and shrubs

Plant Propagation Asexual Plant Propagation Grafting - Segments of different plants connected and induced to grow together as one plant. Fruit and nut trees Scion - Top part of graft Rootstock - Bottom portion Selected for winter hardiness, dwarfing and disease resistance Success depends on good contact between vascular cambium of scion and that of rootstock.

Plant Propagation Asexual Plant Propagation Micropropagation - Grow and maintain plants in a disease-free status in test tubes Advantages: Can grow large numbers of plants in small area. Minimal maintenance required. Rapid multiplication Grown in-vitro in sterile medium and maintained in controlled environments Relies on totipotency of plant cells Totipotency - Capacity of a cell to give rise to any structure of a mature organism

Plant Propagation Asexual Plant Propagation Micropropagation begins with establishment of explants in tissue culture. Explant - Excised piece of stem or leaf tissue Plant parts disinfested and inserted into growth medium in test tubes. Induced to develop multiple shoots = microshoots Microshoots separated and placed in new medium by subculturing. Roots induced by transferring to rooting medium. Plants transferred back to outdoor environment.

Review Crop Plant Evolution Plant Breeding Plant Propagation Breeding Methods Using Sexually Compatible Germplasm Breeding Methods Using Sexually Incompatible Germplasm Plant Propagation Seed Propagation Asexual Plant Propagation