2003 10 06P. Checchia Como 8th ICATPP1 LCcal * : a Calorimeter prototype for future Linear Colliders Design principles Prototype description Construction.

Slides:



Advertisements
Similar presentations
1 A first design of the PEP-N Calorimeter A first design of the PEP-N Calorimeter Presented by P. Patteri Laboratori Nazionali di Frascati INFN for PEP-N.
Advertisements

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Testbeam results of the CMS electromagnetic calorimeter Alessio Ghezzi.
NA62, 21 October 2010V.Polyakov, Shashlik calorimeter1 Radiation hard Shashlik calorimeter for COMPASS experiment Vladimir Polyakov Institute for High.
SiW ECAL R&D in CALICE Nigel Watson Birmingham University For the CALICE Collab. Motivation CALICE Testbeam Calibration Response/Resolution MAPS Option.
Scintillator Tile Hadronic Calorimeter Prototype (analog or semidigital) M.Danilov ITEP(Moscow) CALICE Collaboration LCWS04, Paris.
An improvement of radiation hardness of CMS Hadron Endcap Calorimeters under increased LHC luminosity Joint Institute for Nuclear Research, Dubna, Russia.
Tile and fibre measurements (Tile HCAL) J. Cvach, S. Němeček Institute of Physics AS CR, Prague (Calice Coll.) 1.Tile uniformity, current measurements.
Prototype sPHENIX Calorimeters
10 March 2004Erika Garutti - KEK, Japan1 Development of an Hadronic Tile Calorimeter for TESLA New calorimeter concept for linear collider detector The.
The CALICE test beam activities Fabrizio Salvatore Royal Holloway University of London (for the CALICE collaboration) ALCPG07, FNAL, Chicago, 22 nd October.
The CALICE test beam at CERN Fabrizio Salvatore Royal Holloway University of London (on behalf of the Calice Collaboration) SPSC meeting, CERN, Geneva,
LC Calorimeter Testbeam Requirements Sufficient data for Energy Flow algorithm development Provide data for calorimeter tracking algorithms  Help setting.
Victor KRYSHKIN 9th Topical Seminar Innovative Particle and Radiation Detectors, Siena, 24 May 2004 PRODUCTION AND QUALITY CONTROL OF CMS END CAP HADRON.
CMS Outer Hadron Calorimeter (HO) Project Naba K Mondal Tata Institute, Mumbai, India.
GLC Detector Geometry Y. Sugimoto. Introduction Figure of merit : Main Tracker.
1 First tests of LCCAL prototype at BTF LCCAL: Official INFN R&D project, official DESY R&D project PRC R&D 00/02 Contributors (Como, LNF, Padova, Trieste):
A preliminary analysis of the CALICE test beam data Dhiman Chakraborty, NIU for the CALICE Collaboration LCWS07, Hamburg, Germany May 29 - June 3, 2007.
M.Gallinaro, ``Innovative Particle and Radiation Detectors’’, Siena, October slide 1 The CDF MiniPlug Calorimeter Forward Physics Conceptual.
Silicon pad detector for an electromagnetic calorimeter at future linear collider experiments: characterisation and test beam results Antonio Bulgheroni.
Michele Faucci Giannelli TILC09, Tsukuba, 18 April 2009 SiW Electromagnetic Calorimeter Testbeam results.
Status of EIC Calorimeter R&D at BNL EIC Detector R&D Committee Meeting January 13, 2014 S.Boose, J.Haggerty, E.Kistenev, E,Mannel, S.Stoll, C.Woody PHENIX.
The Design of Barrel Electromagnetic Calorimeter (BEMC) October Lu Jun-guang.
J-C BRIENT LLR AGENDA CALORIMETRY and other subdetectors session J-C. BRIENT LLR Status report on the W-Si ECAL 30’ V. VRBA IP-ASCR Silicon pad sensors.
Silicon pad detectors for LCCAL: characterisation and first results Antonio Bulgheroni University of Milan – Italy on behalf of LCCAL: Official INFN R&D.
Status of Atlas Tile Calorimeter and Study of Muon Interactions L. Price for TileCal community Short Overview of the TileCal Project mechanics instrumentation.
Shashlik type calorimeter for SHIP experiment
Beam test results of Tile/fiber EM calorimeter and Simulator construction status 2005/03/05 Detector Niigata University ONO Hiroaki contents.
The CALICE Si-W ECAL - physics prototype 2012/Apr/25 Tamaki Yoshioka (Kyushu University) Roman Poschl (LAL Orsay)
CALORIMETER system for the CBM detector Ivan Korolko (ITEP Moscow) CBM Collaboration meeting, October 2004.
SiW ECAL Technological Prototype Test beam results Thibault Frisson (LAL, Orsay) on behalf of the CALICE collaboration.
Light Calibration System (LCS) Temperature & Voltage Dependence Option 2: Optical system Option 2: LED driver Calibration of the Hadronic Calorimeter Prototype.
Linear collider muon detector: Marcello Piccolo Amsterdam, April 2003.
Tungsten as HCal-material for a LC at multi-TeV energies CALICE AHCAL Meeting, DESY 17 July 2009 Christian Grefe for the Linear Collider Detector Group.
Pion Showers in Highly Granular Calorimeters Jaroslav Cvach on behalf of the CALICE Collaboration Institute of Physics of the ASCR, Na Slovance 2, CZ -
V0L Hardware Status ALICE WEEK CERN, MARCH 2003 Ana Delia Becerril IFUNAM, México.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
VVS Prototype Construction at Fermilab Erik Ramberg 26 February,2002 Design issues for VVS Details of VVS prototype design Schedule and Budget Testing.
SCECAL progress report Tohru Takeshita (Shinshu) _DESY Beam Test summary _improvements for FNAL BT _FNAL module _current status at Fermilab.
1 The CALICE experiment at MTBF (FNAL) summary of a fruitful test beam experiment Erika Garutti (DESY) On behalf of CALICE.
ILC Calorimetry Test Beam Status Lei Xia ANL HEP.
P. Checchia ECFA-DESY Prague1 Status report of the tile-Si Lccal * project Prototype description Production Beam test results Future plans *
first results from EMCal test beam
V. Korbel, DESY1 Progress Report on the TESLA Tile HCAL Option To be filled soon.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Performance of Shower Maximum Detectors Saori Itoh (Shinshu Univ.) GLC calorimeter group (KEK,Kobe,Konan,Niigata,Shinshu,Tsukuba) Introduction Detector.
Muon triggering system for the ALICE TOF cosmic tests for the ITEP Moscow: A.Akindinov Yu.Grishuk S.Kiselev D.Mal’kevich M.Ryabinin A.Smirnitski K.Voloshin.
Systematics on ScECAL 1 st prototype DESY Apr , CALICE Satoru Uozumi for the CALICE collaboration NIM A, 763 (2014) 278.
Working group on photon vetoes Meeting on June 7 th : 1.Status of Geant4 simulations 2.Discussion on LAV structure 3.Discussion on readout 4.News on Spaghetti.
1 Plannar Active Absorber Calorimeter Adam Para, Niki Saoulidou, Hans Wenzel, Shin-Shan Yu Fermialb Tianchi Zhao University of Washington ACFA Meeting.
Hadron Calorimeter Felix Sefkow EUDET Extended Steering Meeting September 11, 2006.
CALICE, CERN June 29, 2004J. Zálešák, APDs for tileHCAL1 APDs for tileHCAL MiniCal studies with APDs in e-test beam J. Zálešák, Prague with different preamplifiers.
P. Checchia LCWS02 Jeju1 Lccal * : an R&D project for the Electromagnetic barrel Calorimeter Design principles Prototype description Status of.
Prototypes photon veto detectors for NA62 experiment CERN M. Raggi - INFN/Frascati for the NA62 Photon Veto Working Group LNF, RM1, NA, PI, SOFIA First.
SiW ECAL Marcel Reinhard LLR – École polytechnique LCWS ‘08, Chicago.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
COMPASS calorimeters S. Platchkov IRFU, CEA-Saclay GDR, 8-9 avril 2008
the CALICE test beam set-up and running experience
CALICE scintillator HCAL
IHEP group Shashlyk activity towards TDR
State-of-the-art in Hadronic Calorimetry for the Lepton Collider
Physics with the LHCb calorimeter
Vishnu V. Zutshi For the NICADD team.
   Calorimetry et al.    SUMMARY 12 contributions Tile HCAL
Progress in CALICE tile HCAL and LCcal ECAL R&D
Overview on calorimetry R&D for FACTOR (Messina/Trieste/Udine approach) (V. Bonvicini et al.) A. Penzo (June 4, 2008)
Status report of the tile-Si Lccal* project
Argonne National Laboratory
Michele Faucci Giannelli
Steve Magill Steve Kuhlmann ANL/SLAC Motivation
LC Calorimeter Testbeam Requirements
Presentation transcript:

P. Checchia Como 8th ICATPP1 LCcal * : a Calorimeter prototype for future Linear Colliders Design principles Prototype description Construction details Test Beam results Conclusions and Future plans * Contributors (Como, ITE-Warsaw, LNF, Padova, Trieste): M. Alemi, A.Anashkin, M. Anelli, M.Bettini, S.Bertolucci, E. Borsato, M. Caccia, P.C, C. Fanin, J.Marczewski, S. Miscetti, B.Nadalut, M. Nicoletto, M. Prest, R. Peghin, L. Ramina, F. Simonetto, E. Vallazza …. TALK SUMMARY

P. Checchia Como 8th ICATPP2 Design principles From the LC Physics requirements: Tesla TDR solutions: Si W Shashlik (thanks to CALEIDO) Proposed solution: Keep SiW advantages (flat geometry, high granularity) Erec. not from Si but from Scintillator-WLS fibers Reduce (factor >10) the number of channels Alternatives: Cristals Fully compensating Ecal+Hcal

P. Checchia Como 8th ICATPP3 Prototype description Pb/Sc + Si Scintillation light transported with WLS σ tail fibers: Cell separation with grooves in Sc. plates with Tyvec strips inside Coupled with clear fibers (to PM) 45 layers 25 × 25 × 0.3 cm 3 Pb 25 × 25 × 0.3 cm 3 Scint.: 25 cells 5 × 5 cm 2 3 planes: ×.9 cm 2 Si Pads at: 2, 6, 12 X 0

P. Checchia Como 8th ICATPP4 Prototype (cntd) 3 Si planes Actual design: - Detector: 6x7 pads - Plane: 3x2 detectors Goal: shower-shower separation, position measurement, e/h identification: Pad dimension< shower dimension:.9x.9 cm 2 Longitudinal sampling: 3 planes Analogic RO VA hdr9c from IDEas See A. Bulgheronis talk for details Pad diode ac(old)- dc(new) coupled pcb contact with conductive glue

P. Checchia Como 8th ICATPP5 Construction details:Scintillator 3 mm Kuraray SCSN-61(25x25 cm 2 ) 3 mm Bicron BC-408 (25x25 cm 2 ) Machined with vacuum plate as holder Whole Production (>50 tiles) done in september 2002

P. Checchia Como 8th ICATPP6 To make the 2.4 cm radius curvature : middle temperature( ) oven Splicing with optical glue and a supporting tube : stable in >30 day time Fibers: Kuraray 1mm d. Y ppm multicladding Face polished and aluminized by sputtering

P. Checchia Como 8th ICATPP7 Detector Assembling: 45 Layers calorimeter prototype completely built in 2002 Fibres grouped into 25x4 bundles making a 4-fold longitudinal segmentation. Slots for the insertion of the 3 Si pad planes (Motherboard). Mechanical support for Photomultipliers in the 3x3 central cells

Test beam activity after a 2002 pre test with the 1 st layer only (2.1 X 0 ) at CERN two runs at Frascati Beam Test Facility (n × 50 – 750 MeV) detector tunable W target: 1.7, 2.0, 2.3 X magnet W slits LINAC Beam mA it is possible to tune the multeplicity..... run at CERN SPS H6 beam line (e/ 5 – 150 GeV) All tests: two beam position monitors (telescope) put in front of the calorimeter. - Each detector consisting of x–y Si strips with a pitch of 240 m - They cover the central area of the prototype ( cm 2 ) LCcal beam trigger

P. Checchia Como 8th ICATPP9 Test beam activity : detector calibration define cell as the calibrated sum of the 4 longitudinal layers on the same lateral position:C i =b i j=1,4 a j L i j ( parameters) process in two steps: equalise the layer response at the same incoming energy L i j =b k /b i L k j minimise the Energy spread on the sum of 9 cells (iterative process) a j | min. width E cal = n=1,9 C n L1L1 L2L2 L3L3 L4L4 CiCi Si L1 Si L2 Si L3

P. Checchia Como 8th ICATPP10 Good linearity vs molteplicity 3 e - 2 e - 1 e - E E beam (MeV) 11.5% E N phe >5.1 /layer Cal(45 layers) ~ 250 MeV/Mip ~ 800Npe/GeV OK BTF (E ~500 MeV) Cern TB Photoelectron statistics negligble 2. Stocastic Term 11.5% as in MC 3.Light disuniformity <<10% Effects on resolution to be measured at SPS (August 2003) BTF test Test beam results: Linearity and Energy Resolution

P. Checchia Como 8th ICATPP11 E Cern TB 2003 E beam (GeV) 11.1% E E cal (GeV) e-e- pm saturates confirmed at high energy !!! E beam (GeV) Test beam results: Linearity and Energy Resolution E cal (GeV) 15 GeV e - 75 GeV

P. Checchia Como 8th ICATPP12 Si L1+L2 30 GeV electrons Test beam results: Si pad detector (Position Meas.) e - =2.16 mm =2.45 mm =3.27 mm =1.76 mm y pad –y telescope (cm) y telescope (cm) y pad Si L2 (cm) Cern TB 2003 Si L1 Si L2 Si L3

P. Checchia Como 8th ICATPP13 10 GeV electrons Test beam results: Si pad detector (Position Meas.) 10 GeV simulated electrons Position resolution 2.5mm not far from Monte Carlo =2.5 mm PRELIMINARY analysis: pad noise subtraction not optimised

14 Cern TB 2003 E cal (GeV) x (cm) Test beam results: uniformity in (light) Energy response E cal (GeV) 30 GeV e - y(cm) ± 2% x telescope x pad x telescope x pad x (cm) disuniformity < 2% correction from pad reconstruction can be applied! PRELIMINARY: cell border effects dominated by residual miscalibration ± 2% CjCj C j-1

GeV 30 GeV e - Test beam results: ( e/ rejection) 50 GeV e - 30 GeV shower variance: the redundancy of the information on the linear/lateral shower development makes the rejection very easy (difficult to quantify below due to beam contamination) 30 GeV 30 GeV e - E Si pad Layer 1 Cern TB 2003 E cal Layer 1 Si pad Layer 2

P. Checchia Como 8th ICATPP16 BTF test Test beam results: Si Pad two particle separation Two electrons with energy 750 MeV Y silicon chambers X silicon chambers exhaustive analysis not fully accomplished NB: not fully equipped+ problematic channels First layer Second layer Third layer

P. Checchia Como 8th ICATPP17 Conclusions and Future plans A calorimeter prototype with the proposed technique has been built and fully tested. All the results are preliminary. Energy and position resolution as expected: E /E ~ % / E, pos ~2 mm 30 GeV) Light uniformity acceptable. e/ rejection very good ( <10 -3 ). Two particle separation results coming soon. Next steps: include a calorimeter made following this technique into the general LC simulation and Pattern recognition. Combined test with Hcal (?)

P. Checchia Como 8th ICATPP18 backup

P. Checchia Como 8th ICATPP19 Detector Assembling:

P. Checchia Como 8th ICATPP20 PMs Scintill. Piani Si Fibres with PM support structure LCCAL in BTF (Frascati) Fibres faced to PMs

P. Checchia Como 8th ICATPP21 Test beam results CALORIMETER (2.1 X 0 ) 4 layers m.i.p.check light output and uniformity in Light collection: Ratio signal/sigma lower limit for photoelectrons N phe >5.1 /layer cal(45layers):>220 phe/m.i.p. good uniformity: Simulated Light collection disunifority(20%)