1 第二章 化工设备强度计算基础 教学重点: 薄膜理论及其应用 教学难点: 对容器的基本感性认识.

Slides:



Advertisements
Similar presentations
首 页 首 页 上一页 下一页 本讲内容 投影法概述三视图形成及其投影规律平面立体三视图、尺寸标注 本讲内容 复习: P25~P31 、 P84~P85 作业: P7, P8, P14[2-32(2) A3 (1:1)]
Advertisements

第八章 轴系零件 § 8-1 键、销及其连接 一、键连接 二、销连接 § 8-2 轴 一、轴的分类和应用 二、轴的结构和轴上零件的固定
第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
退 出退 出退 出退 出 上一页 下一页 仪器使用 §1-2 尺规绘图工具和仪器的使用方法 图板丁字尺三角板 比例尺圆规分规铅笔曲线板。 要提高绘图的准确度和绘图效率,必须正确地使用各种绘图工 具和仪器。常用的手工绘图工具和仪器有图板、丁字尺、三角板、 比例尺、圆规、分规、铅笔、曲线板等。 提示:将光标放在仪器上,
在近年的高考地理试题中,考查地球上 两点间最短航线的方向问题经常出现,由于 很多学生对这类问题没有从本质上搞清楚, 又缺乏空间想象能力,只是机械地背一些结 论,造成解这类题目时经常出错。 地球上两点间的最短航线方向问题.
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
第八章 多元函数微分法 及其应用 返回 高等数学( XAUAT ) 练习题 解答 练习题 解答 重点难点 基本概念 计算方法 练习题 典型例题 定理结论 习题课结构.
基本知识和几何要素的投影 模块一: 字体练习 第一章 制图的基本知识与基本技能 题目提示返回.
第九章 弯曲变形 静不定梁 §9-1 概 述 一、工程实践中的弯曲变形问题 在工程实践中,对某些受弯构件,除要求 具有足够的强度外,还要求变形不能过大,即 要求构件有足够的刚度,以保证结构或机器正 常工作。
一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间
第二章 质点组力学 质点组:许多(有限或无限)相 互联系的质点组成的系统 研究方法: 1. 分离体法 2. 从整体考虑 把质点的三个定理推广到质点组.
两极异步电动机示意图 (图中气隙磁场形象地 用 N 、 S 来表示) 定子接三相电源上,绕组中流过三相对称电流,气 隙中建立基波旋转磁动势,产生基波旋转磁场,转速 为同步速 : 三相异步电动机的简单工作原理 电动机运行时的基本电磁过程: 这个同步速的气隙磁场切割 转子绕组,产生感应电动势并在 转子绕组中产生相应的电流;
Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011.
2.2 结构的抗力 抗力及其不定因素 材料强度的标准值 材料强度的设计值.
摘要:从有小角度偏转的平行板电容器电 容计算出发,用解析函数的性质计算几种 非平行板电容器电容及电场分布,并用保 形变换进行空间的伸张和扭曲,最后对结 果进行讨论。 关键词:非平行板电容器、电容器、电容、 电场强度、空间变换、保形变换。
2.1 结构上的作用 作用及作用效应 作用的分类 荷载分类及荷载代表值.
1 为了更好的揭示随机现象的规律性并 利用数学工具描述其规律, 有必要引入随 机变量来描述随机试验的不同结果 例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述 例 检测一件产品可能出现的两个结果, 也可以用一个变量来描述 第五章 随机变量及其分布函数.
11-8. 电解质溶液的 活度和活度系数 电解质是有能力形成可以 自由移动的离子的物质. 理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
主讲教师:陈殿友 总课时: 124 第八讲 函数的极限. 第一章 机动 目录 上页 下页 返回 结束 § 3 函数的极限 在上一节我们学习数列的极限,数列 {x n } 可看作自变量 为 n 的函数: x n =f(n),n ∈ N +, 所以,数列 {x n } 的极限为 a, 就是 当自变量 n.
1 第七章 灼热桥丝式电雷管. 1. 热平衡方程 C ℃ 冷却时间 2. 桥丝加热过程 ⑴忽略化学反应惰性方程 ; (2) 为简化集总参数 C, (3) 热损失有两部分 : 轴向与径向 ; 第一种情况 在大功率下忽略热损失, 第二种情况 在输入低功率下 输入 = 散失热量 I I = 3 电容放电时的桥丝温度和发火能量(电容放电下,
第十一章 曲线回归 第一节 曲线的类型与特点 第二节 曲线方程的配置 第三节 多项式回归.
第五节 钢梁的局部稳定 对组合梁才考虑局部稳定问题. 如考虑截面部分发展塑性时,应满足: 一、翼缘板的局部稳定 二、腹板的局部稳定 采用配置加劲肋的方法来解决。 第五节 钢梁的局部稳定.
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
第二章 随机变量及其分布 第一节 随机变量及其分布函数 一、随机变量 用数量来表示试验的基本事件 定义 1 设试验 的基本空间为 , ,如果对试验 的每一个基 本事件 ,规定一个实数记作 与之对应,这样就得到一个定义在基本空 间 上的一个单值实函数 ,称变量 为随机变量. 随机变量常用字母 、 、 等表示.或用.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
第四章 平面 §4-1 平面的表示法 §4-1 平面的表示法 §4-2 各种位置平面的投影特性 §4-2 各种位置平面的投影特性 §4-3 属于平面的点和直线 §4-3 属于平面的点和直线 基本要求 基本要求.
第二章 贝叶斯决策理论 3学时.
流态化 概述 一、固体流态化:颗粒物料与流动的流体接触,使颗粒物料呈类 似于流体的状态。 二、流态化技术的应用:流化催化裂化、吸附、干燥、冷凝等。 三、流态化技术的优点:连续化操作;温度均匀,易调节和维持; 气、固间传质、传热速率高等。 四、本章基本内容: 1. 流态化基本概念 2. 流体力学特性 3.
非均相物系的分离 沉降速度 球形颗粒的 :一、自由沉降 二、沉降速度的计算 三、直径计算 1. 试差法 2. 摩擦数群法 四、非球形颗粒的自由沉降 1. 当量直径 de :与颗粒体积相等的圆球直径 V P — 颗粒的实际体积 2. 球形度  s : S—— 与颗粒实际体积相等的球形表面积.
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
化学系 3 班 何萍 物质的分离原理 世世界上任何物质,其存在形式几乎均以混合 物状态存在。分离过程就是将混合物分成两 种或多种性质不同的纯物质的过程。 分分子蒸馏技术是一种特殊的液-液分离技术。
第2章 激光器的工作原理 回顾 ——产生激光的三个必要条件: 1. 工作物质 2. 激励能源 3. 光学谐振腔
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
量子力学教程 ( 第二版 ) 3.4 连 续 谱 本 征 函 数 的 归 一 化 连续谱本征函数是不能归一化的 一维粒子的动量本征值为的本征函数 ( 平面波 ) 为 可以取 中连续变化的一切实数值. 不难看出,只要则 在量子力学中, 坐标和动量的取值是连续变化 的 ; 角动量的取值是离散的.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
平行线的平行公理与判定 九年制义务教育七年级几何 制作者:赵宁睿. 平行线的平行公理与判定 要点回顾 课堂练习 例题解析 课业小结 平行公理 平行判定.
目录 上页 下页 返回 结束 第八章 第八章 一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影 第四节 空间曲线及其方程.
编译原理总结. 基本概念  编译器 、解释器  编译过程 、各过程的功能  编译器在程序执行过程中的作用  编译器的实现途径.
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
电磁学的一种新的解释 —— 电磁空间 胡凌志 车韶 (物理一班) 内容概要: 1. 想法的由来。 2. 一些概念。 3. 与经典理论的符合。 4. 解释 A-B 效应。 5. 理论的美与缺陷。
初中几何第三册 弦切角 授课人: 董清玲. 弦切角 一、引入新课: 什么是圆心角、圆周角、圆周角定理的内容是什么? 顶点在圆心的角叫圆心角。 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 定理:一条弧所对的圆周角等于它所对的圆心角的一半。 A B′ C B O.
Department of Mathematics 第二章 解析函数 第一节 解析函数的概念 与 C-R 条件 第二节 初等解析函数 第三节 初等多值函数.
古代机械探胜 古代机械探胜 —— 之水车篇. 辉煌的历史 候风地动仪 候风地动仪指南车 备物致用,立成器以为天下利,莫大乎圣人。 —— 易经.
首 页 首 页 上一页 下一页 本讲内容本讲内容 视图,剖视图(Ⅰ) 复习: P107 ~ P115 作业: P48(6-2,6-4), P49( 去 6-6) P50, P51(6-13), P52 P50, P51(6-13), P52 P53 (6-18,6-20) P53 (6-18,6-20)
单摆实验 秒表 读数 游标卡尺.
《 UML 分析与设计》 交互概述图 授课人:唐一韬. 知 识 图 谱知 识 图 谱知 识 图 谱知 识 图 谱.
退 出退 出退 出退 出 上一页 下一页 一、正多边形的画法 1. 正六边形 §1-3 几何作图 ( 1 )根据对角线长度作图   利用外接圆半径作图.
1 物体转动惯量的测量 南昌大学理学院
深圳大学工程技术学院 胡 琳 1. 平面立体正等轴测图的画法 1. 平面立体正等轴测图的画法 2. 曲面立体正等轴测图 的画法 2. 曲面立体正等轴测图 的画法正等轴测图画法非机类.
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
请同学们仔细观察下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线 都经过同一点, 那么这样的两个图形叫做位似图形, 这个点叫做位 似中心.
第三章 正弦交流电路.
综合性问题 距离和角度的度量 画法几何及机械制图 精品资源共享课 换面法应用 工程图学教研室. 工程实际抽象出来的几何问题,如距离、角度的度量;点、线、面 的定位等,并不是单纯的平行、相交、垂直问题,而多是较复杂的综 合问题,其突出特点是要受若干条件的限制,求解时往往要同时满足 几个条件。 解决此类问题的方法通常是:分析、确定解题方案及投影图上实.
7 生产费用在完工产品与在产 品之间分配的核算. 2 第七章 生产费用在完工产品与在产品之 间的分配  知识点 :  理解在产品的概念  掌握生产费用在完工产品与在产品之间的分 配.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
要求: 熟练掌握发动机的基本术语。 结合实物可以说出发动机大致组成。 掌握发动机的基本工作原理。 掌握发动机各系统的作用。
Summary of Curved Solids 曲曲曲曲 面面面面 立立立立 体体体体 概概概概 述述述述 Right Cylinder 圆圆圆圆 柱柱柱柱 体体体体 Cone 圆圆圆圆 锥锥锥锥 体体体体 Sphere 圆圆圆圆 球球球球 体体体体Exercise 练练练练 习习习习 题题题题.
第 11 章 旋转电机交流绕组的电势和磁势 内 容 提 要内 容 提 要  旋转磁场是交流电机工作的基础。  在交流电机理论中有两种旋转磁场: (1) 机械旋转磁场(二极机械旋转磁场,四极机械旋转磁场) (2) 电气旋转磁场(二极电气旋转磁场,四极电气旋转磁场)二极机械旋转磁场四极机械旋转磁场二极电气旋转磁场四极电气旋转磁场.
§5.6 利用希尔伯特 (Hilbert) 变换 研究系统的约束特性 希尔伯特变换的引入 可实现系统的网络函数与希尔伯特变换.
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
第四章 拱桥设计与计算. 拱上建筑与主拱的联合作用: 拱桥,实为多次超静定的空间结构,当活载作用于桥跨结构时,拱 上建筑参与主拱圈共同承受活载的作用,这种现象,称为 “ 拱上建筑与 主拱的联合作用 ” 或简称 “ 联合作用 ” 。拱式拱上建筑的联合作用较大,梁 板式拱上建筑的联合作用较小。
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
第二节. 广告牌为什么会被风吹倒? 结构的稳定性: 指结构在负载的作用下 维持其原有平衡状态的能力。 它是结构的重要性质之一。
1 复习 按承压方式对压力容器分类 内压容器 外压容器 压力容器 2 教学重点: ( 1 )失稳和临界压力的概念; ( 2 )影响临界压力的因素; ( 3 )外压容器的图算法设计。 教学难点: 图算法的原理。 第五章 外压圆筒与封头的设计.
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
本章讨论有限自由度结构系统,在给定载荷和初始条件激励下的系统动力响应计算方法。 第 六 章
寿县一中 常清 简单几何体 鸟巢.
一、弧微分 规定:   单调增函数 如图,   弧微分公式 二、曲率及其计算公式 曲率是描述曲线局部性质(弯曲程度)的量. ) ) 弧段弯曲程度 越大转角越大 转角相同弧段越 短弯曲程度越大 1 、曲率的定义 )
§7.2 估计量的评价标准 上一节我们看到,对于总体 X 的同一个 未知参数,由于采用的估计方法不同,可 能会产生多个不同的估计量.这就提出一 个问题,当总体的一个参数存在不同的估 计量时,究竟采用哪一个好呢?或者说怎 样评价一个估计量的统计性能呢?下面给 出几个常用的评价准则. 一.无偏性.
Presentation transcript:

1 第二章 化工设备强度计算基础 教学重点: 薄膜理论及其应用 教学难点: 对容器的基本感性认识

2 第一节 典型回转薄壳应力分析 一、回转薄壳的形成及几何特征 1 、形成:任何平面曲线绕同平面内的某一已知直线旋转而 成的曲面称为回转曲面,其中已知直线称回转曲面的轴,绕 轴旋转的平面曲线称为回转曲面的母线。 母线 图 3-3 回转壳体的几何特性 轴线 回转曲面

3 回转壳体 由回转曲面作中间面形成的壳体。 回转曲面 由平面直线或平面曲线绕其同平面内的 回转轴回转一周所形成的曲面。 中间面 平分壳体厚度的曲面称为壳体的中间 面。中间面与壳体内外表面等距离,它 代表了壳体的几何特性。

4 经线 通过回转轴的平面与中间 面的交线,如 AB’ 、 AB’’ 。 经线与母线形状完全相同 法线 过中间面上的点 M 且垂 直于中间面的直线 n 称 为中间面在该点的法线。 法线的延长线必与回转轴 相交

5 纬线 以法线 NK 为母线绕回转轴 OA 回转一周所形成的园锥 法截面与中间面的交线 CND 圆 K 垂直于回转轴的平面与中 间面的交线称平行圆。显 然,平行圆即纬线。 平行圆

6 第一曲率半径 R 1 第二曲率半径 R 2 经线处任一点 M 的曲率半径为回转 体在该点的 “ 第一曲率半径 ” 通过经线上一点 M 的法线作垂直于经线的平面与中间面相 割形成的曲线 MEF ,此曲线在 M 点处的曲率半径称为该点 的 “ 第二曲率半径 ”

7 R 1 =∞ R 2 =r=R 各典型回转壳体曲率半径的计算 直线的曲 率半径为 无穷 R 1 =∞ R 2 =r/ COSα R 1 =R 2 = R

8 二、薄膜理论 无力矩 理论求解 拉应力 有力矩 理论求解 边缘应力 假定材料具有连续性、均匀性和各向同性,即壳体是完 全弹性的. 1 、无力矩理论基本假设 2 、无力矩理论基本内容 在研究壳体受力时,认为壳体壁很薄,在分析内压的作 用结果时,忽略了弯曲应力对器壁的影响,而只考虑壳 体器壁所承受的拉应力. 3 、结论

9 三、受气体内压回转薄壳的受力分析 图 3-9 受气体内压的圆筒形壳体 根据力学平衡,内压产生的轴向合力与壳体壁横截面上的轴向 总拉力相等,得: 计算得径向应力公式为: : 经向应力 : 圆筒壁厚 P : 圆筒所承内压 D : 圆筒的中径 1 、受气体内压圆筒形壳体的受力分析

10 图 3-9 受气体内压的圆筒形壳体 根据力学平衡,内压产生垂直于截面的合力与壳体壁纵截面上 的产生的总拉力相等,得: 计算得环向应力公式为: : 环向应力 由环向应力、径向应力计算公式得:

11 结论:对相同的内压,球壳的环向应力要比同直径、 同厚度 的圆筒壳的环向应力小一半,这是球壳显著的优点。 图 3-9 受气体内压的球形壳体 根据力学平衡,垂直于截面的总压力与壳体环形截面上的总拉 力相等,得: 2 、受气体内压球形壳体的受力分析 计算得球体应力公式:

12 圆锥形壳半锥角为 α , A 点处半径 r ,厚度 为 δ ,则在 A 点处: 图 3-13 锥壳的应力分析 3 、受气体内压锥形壳体的受力分析 根据薄膜理论对受气体内压的锥形壳体进行受力分析,得求解 回转壳体的两个基本方程: 微体平衡方程: 区域平衡方程: 将上式代入为题平衡方程、区域平衡方程得 圆锥形壳体在 A 点处的应力:

13 椭圆壳经线为一椭 圆, a 、 b 分别为椭 圆的长短轴半径, 其曲线方程 1 )、第一曲率半径 R 1 4 、受气体内压椭圆形壳体的受力分析 脱狱啊鸟啼计算

14 2 )、第二曲率半径 R 2

15 把 R 1 和 R 2 的表达式代入微体平衡 方程及区域平衡方程得: a,b —— 分别为椭球壳的长、短半径, mm ; x —— 椭球壳上任意点距椭球壳中心轴的距离 mm 其它符号 意义与单位同前。 3 )、应力计算公式 椭圆形壳体受力图

16 由 和 的公式可知 : 在 x=0 处 在x=a处在x=a处 5 、椭圆形封头的应力分布 ①在椭圆形封头的中心 (x=0 处 ), 经向应力与环向应力相等。 ②经向应力恒为正值,是拉应力。 ③周向应力最大值在 x=0 处,最小值在 x=a 处。

17  顶点应力最大,经向应力与环向应力是相等的拉应力。  顶点的经向应力比边缘处的经向应力大一倍。  顶点处的环向应力和边缘处相等但符号相反。  应力值连续变化。  标准椭圆形封头 a/b=2 在 x=0 处 在 x=a 处 图 3-12 椭圆形封头的应力分布

18 【例 2-1 】圆筒形和球形容器内气体压力均为 2MPa, 圆筒形容器 外径为 1000mm ,球形容器外径 2000mm ,壳体壁厚均为 20mm, 试求圆筒形和球形容器的应力。 解:解: 1).计算圆筒形壳体的应力 圆筒体的中间面直径: mm MPa 根据公式,圆筒体横截面的经向应力为: 2 ).计算球形壳体截面的拉应力 球形壳体的中间面直径: 根据公式,圆筒体纵截面的环向应力为: mm 根据公式,球形壳体横截面的经向应力为: MPa

19 【例 2-2 】有圆筒形容器,两端 为椭圆形封头,已知圆筒平均 直径 D=2020mm, 壁厚 δ=20mm, 工作压力 p=2MPa 。 (1) 试求筒身上的经向应力 和环向应力 (2) 如果椭圆形封头的 a/b 分别 为 2 , 和 3 ,封头厚度为 20mm , 分别确定封头上最大经向应力 与环向应力及最大应力所在的 位置 。 图 3-16 例 3-2 附图( 1 )

20 解: 1.求筒身应力 经向应力: 环向应力: 2 .求封头上最大应力 a/b=2 时, a=1010mm,b=505mm 在 x=0 处 在x=a处在x=a处 最大应力有两处:一处在椭圆形封头的顶点,即 x=0 处;一处 在椭圆形封头的底边,即 x=a 处。如图 3-17a 所示。

21 a/b= 时, a=1010mm,b=714mm 在 x=0 处 在x=a处在x=a处 最大应力在 x=0 处,如图 3-17b 所示。

22 a/b= 3 时, a=1010mm,b=337mm 在 x=0 处 在x=a处在x=a处 最大应力在 x=a 处,如图 3-17c 所示。

23 图 3-17 例 3-2 附图( 2 )

24 边缘应力的概念:由于组合壳体几何形状或材料的物理性能不 同,或载荷不连续等而使连接边缘处的变形受到约束产生的局 部应力。 边缘应力的特点 对边缘应力的处理: 1 、选用塑性较好的金属材料 2 、在设计过程中尽量避免边缘区应力集中 3 、进行合理的热处理 4 、对受脉动载荷或受循环载荷作用的壳体,采取适当 的措施降低边缘应力 局部性 自限性 第二节 边缘应力