Universidad del País Vasco, San Sebastián A. Mugarza A. Närmann J. E. Ortega A. Rubio University of Wisconsin Madison F. J. Himpsel macroscopic “miscut”

Slides:



Advertisements
Similar presentations
INFMDMF INFMeeting, Genova Giugno 2003 EFFECTIVE MASS AND MOMENTUM RESOLVED INTRINSIC LINEWIDTH OF IMAGE-POTENTIAL STATES ON Ag(100) INFM and Università
Advertisements

SRC Review – October 4 th, 2005 © 2005 M.Y. Simmons Single atom imaging and manipulation Don Eigler (IBM), Science 262, 218 (1993) Silicon (100) surface.
Average Structure Of Quasicrystals José Luis Aragón Vera Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México. Gerardo.
Ultraviolet Photoelectron Spectroscopy (UPS)
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Study on polarization of high- energy photons from the Crab pulsar 〇 J. Takata (TIARA-NTHU/ASIAA,Taiwan) H.-K. Chang (NTH Univ., Taiwan) K.S. Cheng (HK.
STM study of organic molecules on a hexagonal SiC surface Tamara Ovramenko PhD supervisors: Andrew Mayne Gérald Dujardin Groupe de Nanosciences Moléculaires.
K 2 CsSb Cathode Development John Smedley Triveni Rao Andrew Burrill BNL ERL needs – 50 mA, 7 mm dia., 1.3 mA/mm 2.
Spin Excitations and Spin Damping in Ultrathin Ferromagnets D. L. Mills Department of Physics and Astronomy University of California Irvine, California.
An STM Measures I(r) Tunneling is one of the simplest quantum mechanical process A Laser STM for Molecules Tunneling has transformed surface science. Scanning.
Alternative representation of QW Phase accumulation model.
The electronic structures of 2D atomically uniform thin film S.- J. Tang, T. Miller, and T.-C. Chiang Department of Physics, University of Illinois at.
Thermal Enhancement of Interference Effects in Quantum Point Contacts Adel Abbout, Gabriel Lemarié and Jean-Louis Pichard Phys. Rev. Lett. 106,
IVC-16, Venice June 28-July 2, 2004 INFMD.M.F. Ultrafast Electron Dynamics of non-thermal population in metals INFM and Università Cattolica del Sacro.
ECRYS 2011 Confinement-Induced Vortex Phases in Superconductors Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6,
X-ray photoemission spectroscopy study on III-Nitride films
Wittenberg 2: Tunneling Spectroscopy
Theory of the Quantum Mirage*
Guillermina Ramirez San Juan
Electron Dynamics at Metal Surfaces Università degli Studi di Trieste Dipartimento di Fisica and Sincrotrone Trieste (Trieste, Italy) Fulvio Parmigiani.
Rodolfo Jalabert CHARGE AND SPIN DIPOLE RESONANCES IN METALLIC NANOPARTICULES : collective versus single-particle excitations R. Molina (Madrid) G. Weick.
Auger Electron Spectroscopy of In 2 O on GaAs(001)-(2x4) As, Ga In O Ga As In:O = 2:1 In 2 O 3(s)  In 2 O (g) +O 2(g) Scanning Tunneling Microscopy and.
Iodine Molecular Interferometer and Inversion Symmetry Mat Leonard.
1 M. Aslam Baig National Center for Physics Quaid-i-Azam University Campus, Islamabad Pakistan
1 Femtosecond Time and Angle-Resolved Photoelectron Spectroscopy of Aqueous Solutions Toshinori Suzuki Kyoto University photoelectron.
Computational Solid State Physics 計算物性学特論 5回
Femtosecond low-energy electron diffraction and imaging
Gilad Haran Chemical Physics Department Weizmann Institute of Science Charge-transfer effects in Raman Scattering of Individual Molecules FRISNO, EIN-BOKEK,
Nanomaterials – Electronic Properties Keya Dharamvir.
Silvia Tognolini First Year Workshop, 15 October 2013, Milan Investigating graphene/metal interfaces by time - resolved non linear photoemission.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Revisit of the Growth of Co on Cu(111) Introduction  Cobalt thin films on Cu(111) are model systems for magnetic investigations and their structures and.
J.Zhang a, S.H.Cho b, and J.M.Seo b a Department of Physics, Yunnan University, Kunming ,P.R.China b Department of Physics, Chonbuk National University,
VUV14, July 23, 2004 Electronic structures of Ca induced one-dimensional reconstructions on a Si(111) surface Kazuyuki Sakamoto Dept. Phys., Tohoku University,
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Electronic Properties of Thin Film Organic Superconductors studied using Synchrotron Radiation-based Soft X-Ray Spectroscopies Kevin E. Smith, Boston University,
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
V. Electrical Properties at Surfaces. Interface: two different bulk materials are brought together to form an interface The abrupt change of electronic.
Figure 3.1. Schematic showing all major components of an SPM. In this example, feedback is used to move the sensor vertically to maintain a constant signal.
Detection of Spin-Polarized Electrons:
Transport in three-dimensional magnetic field: examples from JT-60U and LHD Katsumi Ida and LHD experiment group and JT-60 group 14th IEA-RFP Workshop.
Page 1 Phys Baski Diffraction Techniques Topic #7: Diffraction Techniques Introductory Material –Wave-like nature of electrons, diffraction/interference.
Coherent Phase Control of Electronic Transitions in Gallium Arsenide Robert J. Gordon, Sima Singha, and Zhan Hu Department of Chemistry University of Illinois.
In-situ Scanning Tunneling Microscopy Study of Bismuth Electrodeposition on Au(100) and Au(111) S.H. Zheng a, C.A. Jeffrey a,b, D.A. Harrington b E. Bohannan.
The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility.
Absorption-based spectroscopy
Lecture 21 Optical properties. Incoming lightReflected light Transmitted light Absorbed light Heat Light impinging onto an object (material) can be absorbed,
Quantum Efficiency Dependence on the Incidence Light Angle in Copper Photocathodes: Vectorial Photoelectric Effect Emanuele Pedersoli Università Cattolica.
Theory of the Fano Effect and Quantum Mirage STM Spectroscopy of Magnetic Adatoms on Metallic Surfaces.
From an Atom to a Solid Photoemission spectra of negative copper clusters versus number of atoms in the cluster. The highest energy peak corres- ponds.
Infrared Spectra of Anionic Coinage Metal-Water Complexes J. Mathias Weber JILA and Department of Chemistry and Biochemistry University of Colorado at.
Electrons in Solids Simplest Model: Free Electron Gas Quantum Numbers E,k Fermi “Surfaces” Beyond Free Electrons: Bloch’s Wave Function E(k) Band Dispersion.
B a The crystal lattice of rubrene is orthorhombic:  =  =  = 90 0 and a = Å b = 7.18 Å c = Å Density = 1.26 g/cm 3 Z = 4 The space group.
Secondary Electron Emission in the Limit of Low Energy and its Effect on High Energy Physics Accelerators A. N. ANDRONOV, A. S. SMIRNOV, St. Petersburg.
Van Roekeghem et al., EPL (2014) Electronic structure calculations in strongly correlated materials A short overview Pascal Delange - Journée scientifique.
Department of Electronics
Scattering controlled photoelectron escape from NEA – photocathodes
Spectroscopic and related techniques in surface science for unravelling heterogeneously catalyzed reaction mechanisms Ludo Juurlink, Ph.D. Leiden Institute.
Band structure: Semiconductor
Measuring the quantum numbers E,k of electrons in a solid
One Step Photoemission from Ag(111)
WHAT IS A WAVE? disturbance that transports energy through matter or space.
Molecular Adsorption on Metallic Nanostructures:
Solid Surfaces. Techniques to study surfaces.
Molecular Adsorption on Metallic Nanostructures:
Chap 23 Optical properties of metals and inelastic scattering
Charge-transfer effects in Raman Scattering of Individual Molecules
Edmar A. Soares, Rosa M. C. Marques, Vagner E. de Carvalho, Hans-D
Fig. 3 Scan rate effects on the layer edge current.
Surface analysis techniques part I
Presentation transcript:

Universidad del País Vasco, San Sebastián A. Mugarza A. Närmann J. E. Ortega A. Rubio University of Wisconsin Madison F. J. Himpsel macroscopic “miscut” angle Universidad Autónoma de Madrid A. Mascaraque E. G. Michel University of Osnabrück S. Speller A. Bachmann

 /d [111] k  (Å -1 ) 4  /d 2  /d  /d k || (Å -1 ) L   º [111] 2  /d  /d k  (Å -1 ) k || (Å -1 ) L    º Terrace and step modulated surface wave function probed by photon-energy-dependent photoemission J. E. Ortega et al., Phys. Rev. Lett. 84, 6110 (2000)

Cu(111): p z -like surface state Topographic scan 7º miscut Cu(111) STM Bottom of the surface band Spectroscopic scan U= - 0,14V Repulsive barrier at the step

Recomendación Open versus closed facets in stepped Cu(111) 7º miscut, 500x500Å 2 Spectroscopy

Terrace width distribution 9º miscut

Envelope function (k(E)) Bloch oscillation (k edge ) Co n=2, 3ML n=3, 6ML Cu

Dispersion on 100-like stepped Cu(111)

[111]  L   d  d  E1E1 E2E2 E1E1 [111]  L   d E22E22 L kk k || k   x 0.5 9º miscut5º miscut

 Accessible Photoemission Final States

 [111]  L   d  d  E1E1 E2E2 E1E1 [111]  L   d E22E22 L kk k || k   x 0.5 9º miscut5º miscut Accessible Photoemission Final States

Transition from terrace to step modulation 7º miscut (17 Å wide terraces) [111] L  3  /L 2   k  (Å -1 ) k  (Å -1 )

 terrace 11 deg miscut, 111-like steps Umklapp with step lattice vectors  L  d [111] k  (Å ) k || (Å )  d  d L   º

Motion perpendicular to the step (scattering) Motion parallel to the step (free motion) 5 deg miscut, (111)-like steps

-0,8-0,6-0,4-0,20,0 h = 10 eV 5º 7º 9º x2 miscut 100-like steps One-dimensional state step state

1D State: sputtering test band bottom 15 deg off 19 deg off 22 deg off 1 min sputtering || to the steps band bottom 15 deg off 19 deg off 22 deg off 2 min sputtering  to the steps Clean 7 deg miscut, {111}-like steps band bottom 15 deg off 19 deg off 22 deg off LEED [10] spot

Dispersion  to the step: confinement Dispersion || to the step: free motion Flat surface: 2D Image State h e eV  J. E. Ortega et al., Phys. Rev. B 49, (1994) E x y Vacuum (reference level) 2D Image State 1D Image State (step state) Charge smoothening at the step (Smoluchowsky dipole)   eV  Vicinal Cu(100) [100] [011] 11 Å