The IceCube High Energy Telesope The detector elements Expected Sensitivity Project Status Shigeru Yoshida Dept. of Physics CHIBA Univ. ICRC 2003.

Slides:



Advertisements
Similar presentations
UW River Falls, May 15-16, 2003 Searching for Dark Matter Through South Pole Ice Kurt Woschnagg University of California - Berkeley.
Advertisements

GZK ’s and their Detection with IceCube Interactions Interactions Results Results Implications for the IceCube Implications for the IceCube Summary Summary.
The IceCube Neutrino Telescope Kyler Kuehn Center for Cosmology and AstroParticle Physics The Ohio State University Novel Searches for Dark Matter CCAPP.
EHE Neutrino Search with the IceCube Aya Ishihara The University of Wisconsin - Madison for the EHE Verification working group.
The IceCube Neutrino Telescope Project overview and Status EHE Physics Example: Detection of GZK neutrinos TAUP2003 Shigeru Yoshida, Chiba University.
Calibration of the 10inch PMT for IceCube Experiment 03UM1106 Kazuhiro Fujimoto A thesis submitted in partial fulfillment of the requirements of the degree.
IceCube.
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Search for Extremely-high Energy Cosmic Neutrino with IceCube Chiba Univ. Mio Ono.
GZK EHE detection What is the GZK mechanism? EHE  Propagation in the Earth Expected intensities at the IceCube depth Atmospheric  – background Event.
EHE Lepton Propagation in the Earth and Its Implications to the IceCube EHE  Propagation in the Earth EHE  Propagation in the Earth What is the.
IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of.
Optical Sensor and DAQ in IceCube Albrecht Karle University of Wisconsin-Madison Chiba July, 2003.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
Neutrino Astronomy at the South Pole David Boersma UW Madison “New Views of the Universe” Chicago, 10 December 2005.
IceCube a kilometer-scale deep-ice observatory in Antarctica Olga Botner Uppsala university, Sweden Neutrino 2004, June 14-19, icecube.wisc.edu.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
Per Olof Hulth Stockholm university1 NSF Review March 25-27, 2003 Introductory remarks Per Olof Hulth Stockholm university.
Neutrino Astronomy with AMANDA Steven W. Barwick University of California-Irvine SPIE Conference -Hawaii, 2002.
A km 3 Neutrino Telescope: IceCube at the South Pole Howard Matis - LBNL for the IceCube Collaboration.
Neutrino astronomy with AMANDA and IceCube Per Olof Hulth Stockholm University
IceCube S Robbins University of Wuppertal Moriond - “Contents and Structures of the Universe” La Thuile, Italy, March 2006 Outlook for Neutrino Detection.
The next generation of Neutrino telescopes -ICECUBE Design and Performance, Science Potential Albrecht Karle University of Wisconsin-Madison
Frontiers in Contemporary Physics: May 23, 2005 Recent Results From AMANDA and IceCube Jessica Hodges University of Wisconsin – Madison for the IceCube.
AMANDA Results from the AMANDA neutrino telescope Carlos P. de los Heros Department of High Energy Physics Uppsala University.
First Results from IceCube Physics Motivation Hardware Overview Deployment First Results Conclusions & Future Plans Spencer Klein, LBNL for the IceCube.
Neutrino Astronomy at the South Pole David Boersma UW Madison Lake Louise Winter Institute Chicago, 23 February 2006.
AMANDA and IceCube neutrino telescopes at the South Pole Per Olof Hulth Stockholm University.
An Overview of the IceCube Neutrino Telescope Kael Hanson University of Wisconsin – Madison 8th International Conference on Advanced Technology and Particle.
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
The Status of IceCube Mark Krasberg University of Wisconsin-Madison RICH 2004 Conference, Playa del Carmen, Mexico Dec 3, 2004.
News from the South Pole: Recent Results from the IceCube and AMANDA Neutrino Telescopes Alexander Kappes UW-Madison PANIC ‘08 November 2008, Eilat (Israel)
COSMO/CosPA 2010 Searches for the Highest Energy Neutrino with IceCube Searches for the Highest Energy Neutrino with IceCube Aya Ishihara ( Fellow) (JSPS.
B.Baret Vrije Univertsiteit Brusse l Vrije Universiteit Brussel, Belgium The AMANDA – IceCube telescopes & Dark Matter searches B. Baret on behalf of the.
Collisions: Cosmic Accelerators the sky > 10 GeV photon energy the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
Aspen Institute for Physics 02 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
IceCube and AMANDA: Neutrino Astronomy at the South Pole Brennan Hughey February 22nd, 2007.
KEK, Feb 27, 2006Tom Gaisser1 Cosmic-ray physics with IceCube IceTop the surface component of IceCube.
XIX European Cosmic Ray Symposium Firenze (Italy) Neutrino Astronomy and Cosmic Rays at the South Pole Latest.
Science Advisory Committee March 30, 2006 Jim Yeck IceCube Project Director IceCube Construction Progress.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
Status and Results Elisa Bernardini DESY Zeuthen, Germany VLVnT Workshop Amsterdam, Oct (
IceCube project Shigeru Yoshida Dept. of Physics, Chiba University.
Icecube Neutrino Observatory at the South Pole Kirill Filimonov, University of California, Berkeley, for the IceCube Collaboration.
RICH2002, Pylos, GreeceResults from AMANDA/Allan Hallgren, Uppsala1 Results from the Antarctic Muon and Neutrino Detector Array (AMANDA) **Talk prepared.
Large-scale Underwater/ice Neutrino Telescopes G. Domogatsky (INR RAN, Moscow)
I Taboada, GA Tech High-energy neutrino astronomy with IceCube Ignacio Taboada Georgia Institute of Technology for the IceCube collaboration Madison, NDM.
IceCube: A km-scale Detector David Nygren, LBNL ISVHECRI 6-12 September 2004.
1 Particles and Nuclei International Conference (PANIC05) Santa Fe, NM (U.S.A.) October 24 th, from Quark n.36, 02/01/04 Neutrino.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
Neutrino Astrophyics at the South Pole. S. Seunarine for the RICE Collaboration.
1 slide Brennan Hughey University of Wisconsin – Madison for the AMANDA Collaboration Recent Results From the AMANDA Experiment Rencontres du Vietnam August.
IceTop Design: 1 David Seckel – 3/11/2002 Berkeley, CA IceTop Overview David Seckel IceTop Group University of Delaware.
IceCube Neutrino Telescope Astroparticle Physics at the South Pole Brendan Fox Pennsylvania State University for the IceCube Collaboration VLVNT08 - Very.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
Search for Ultra-High Energy Tau Neutrinos in IceCube Dawn Williams University of Alabama For the IceCube Collaboration The 12 th International Workshop.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara Chiba University.
High-energy Neutrino Astrophysics with IceCube Neutrino Observatory
THE BAIKAL NEUTRINO EXPERIMENT: STATUS, SELECTED PHYSICS RESULTS, AND PERSPECTIVES Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for.
Albrecht Karle University of Wisconsin - Madison for the IceCube Collaboration IceCube Current status, recent results and future prospects.
Dark Matter Searches with AMANDA and IceCube Catherine De Clercq for the IceCube Collaboration Vrije Universiteit Brussel Interuniversity Institute for.
1 IceCube Christian Spiering for the IceCube Collaboration EPSC, Cracow July 2009.
Measuring the total neutrino cross section using the IceCube detector
Julia Becker for the IceCube collaboration
Performance of the AMANDA-II Detector
IceCube Neutrino Telescope Astroparticle Physics at the South Pole
Presentation transcript:

The IceCube High Energy Telesope The detector elements Expected Sensitivity Project Status Shigeru Yoshida Dept. of Physics CHIBA Univ. ICRC 2003

The IceCube Collaboration Institutions: 11 US, 9 European institutions and 1 Japanese institution; ≈150 people 1. Bartol Research Institute, University of Delaware, USA 2. BUGH Wuppertal, Germany 3. Dept. of Physics, Chiba University, JAPAN 4. Universite Libre de Bruxelles, Brussels, Belgium 5. CTSPS, Clark-Atlanta University, Atlanta USA 6. DESY-Zeuthen, Zeuthen, Germany 7. Institute for Advanced Study, Princeton, USA 8. Dept. of Technology, Kalmar University, Kalmar, Sweden 9. Lawrence Berkeley National Laboratory, Berkeley, USA 10. Department of Physics, Southern University and A\&M College, Baton Rouge, LA, USA 11. Dept. of Physics, UC Berkeley, USA 12. Institute of Physics, University of Mainz, Mainz, Germany 13. Department of Physics, University of Maryland, USA 14. University of Mons-Hainaut, Mons, Belgium 15. Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA 16. Dept. of Astronomy, Dept. of Physics, SSEC, University of Wisconsin, Madison, USA 17. Physics Department, University of Wisconsin, River Falls, USA 18. Division of High Energy Physics, Uppsala University, Uppsala, Sweden 19. Fysikum, Stockholm University, Stockholm, Sweden 20. University of Alabama, USA 21. Vrije Universiteit Brussel, Brussel, Belgium

South Pole Dark sector AMANDA IceCube Dome Skiway

IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of all flavors at energies from 10 7 eV (SN) to eV

Design goals IceCube was designed to detect to neutrinos over a wider range of energies and all flavors. If one would wish to build a detector to detect primarily PeV or EeV neutrinos, one would obviously end up with a different detector.

1.4 km 1km Upward Ice Rock ν ± π γ ν + e - e 1km Downward ν γ γ + e - e lepton 

E µ =10 TeV ≈ 90 hitsE µ =6 PeV ≈ 1000 hits How our events look like The typical light cylinder generated by a muon of 100 GeV is 20 m, 1PeV 400 m, 1EeV it is about 600 to 700 m.

Assembled DOM

DAQ design: Digital Optical Module - PMT pulses are digitized in the Ice Design parameters: Time resolution:≤ 5 nsec (system level) Dynamic range: 200 photoelectrons/15 nsec (Integrated dynamic range: > 2000 photoelectrons) (1.p.e. /10ns ~  10^7G ~8mV 50  4V saturation  500p.e. Digitization depth: 4 µ sec. Noise rate in situ: ≤500 Hz Tube trig.rate by muons 20Hz 33 cm DOM

Capture Waveform information (MC) ATWD 300MHz 14 bits. 3 different gains (x15 x3 x0.5) Capture inter. 426nsec 10 bits FADC for long duration pulse. E=10 PeV µsec Events / 10 nsec String 1 String 2 String 3 String 4 String 5

Photomultiplier: Hamamatsu R (10 ”, 10-stage, 1E+08 gain) Selection criteria -40 °C) Noise < 300 Hz (SN, bandwidth) Gain > 5E7 at 2kV (nom. 1E7 + margin) P/V > 2.0 (Charge res.; in-situ gain calibration) Notes: Only Hamamatsu PMT meets excellent low noise rates! Tested three flavors of R7081.

DAQ Network architecture Custom design: 5000 DOMs, 2500 copper pairs, 800 PCI cards (10 racks) Off the shelf IT infrastructure, Computers, switches, disks DAQ Software Datahandling software

Digital Optical Module (DOM) Main Board Test Card

SPE Discriminator Scan – PMT Pulses Input (71DB)

SPE Waveforms CH0 CH1 CH2

The big reel for the hotwater drill

Angular resolution as a function of zenith angle  above 1 TeV, resolution ~ degrees for most zenith angles 0.8° 0.6° Waveform information not used. Will improve resolution for high energies !

Event rates for -atmospheric - AGN (E -2 flux 10 times below MPR bound and present exp. limits) - atm.  from 1 EAS - atm.  from 2 EAS after trigger after cuts to reject atm.  background (Level 2)

Energy Spectrum Diffuse Search Blue: after downgoing muon rejection Red: after cut on N hit to get ultimate sensitivity

Energy Spectrum Point Source Search Blue: after downgoing muon rejection Red: after cut on N hit to get ultimate sensitivity

cos  A eff / km 2 Effective area vs. zenith angle after rejection of background from downgoing atmospheric muons Effective area vs. muon energy - after trigger - after rejection of atm  - after cuts to get the ultimate sensitivity for point sources (optimized for 2 benchmark spectra) Effective area of IceCube

E 2 dN /dE ~10 -8 GeV/cm 2 s sr (diffuse) E 2 dN /dE ~7x10 -9 GeV/cm 2 s (Point source) 200 bursts in coincidence (GRBs – WB flux) In three years operation … ICRC 2003 For 5  detection

Construction: 11/ /2009 AMANDA SPASE-2 South Pole Dome Skiway 100 m Grid North Next season: Buildup of the Drill and IceTop prototypes

Project status Approved by U.S. the National Science Board Startup funding is allocated. 100 DOMs are produced and being tested this year. Assembling of the drill/IceTop prototypes is carried out at the pole this season. Full Construction start in 04/05; takes 6 years to complete. Then 16 strings per season, increased rate may be possible. ICRC 2003

Down-going events dominates… 1400 m 2800 m 11000m UpDown

ICRC 2003 Downward going!! 1 km 2 year

ICRC 2003 Intensity of EHE  and  GZK model I  (E>10PeV)I  (E>10PeV) RATE [/yr/ km 2 ] m=4 Z max =4 Down Up m=7 Z max =5 Down Up [cm -2 sec -1 ]