Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electromagnetic induction Lenz’s law Faraday’s law The nature of electromagnetic.

Slides:



Advertisements
Similar presentations
Chapter 30. Induction and Inductance
Advertisements

Electromagnetic Induction
Chapter Review.
Reading Quiz Chapter 25 Dr. Harold Williams. © 2010 Pearson Education, Inc. Reading Quiz 1.Which of the following will cause an induced current in a coil.
© 2012 Pearson Education, Inc. { Chapter 29 Electromagnetic Induction (cont.)
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Lecture 24 Faraday’s Law April 1. Electromagnetic Induction Slide 25-8.
Phys 102 – Lecture 13 Motional EMF & Lenz’ law.
Magnetic Induction (Mutual Induction) The process by which a body having electric or magnetic properties produces magnetism, an electric charge, or an.
Lenz’s Law AP Physics C Montwood High School R. Casao.
Electromagnetic Waves-Ch 25 Wave Optics—Interference --Ch 17
Faraday’s Law Lenz’s Law Electromagnetic Waves
Biot-Savart Law The Field Produced by a Straight Wire.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electromagnetic induction Lenz’s law Faraday’s law The nature of electromagnetic.
1. Up4. Left 2. Down5. Into the page 3. Right6. Out of the page (back of card) No Direction ConcepTest #17: A uniform magnetic field B points into the.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electromagnetic induction Lenz’s law Faraday’s law The nature of electromagnetic.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electromagnetic induction Lenz’s law Faraday’s law The nature of electromagnetic.
Copyright © 2009 Pearson Education, Inc. Lecture 9 – Electromagnetic Induction.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Magnets and the magnetic field Electric currents create magnetic fields.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electromagnetic induction Lenz’s law Faraday’s law The nature of electromagnetic.
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created? Gauss’s.
Biot-Savart Law The Field Produced by a Straight Wire.
Chapter 29 Electromagnetic Induction and Faraday’s Law
Induction and Inductance Chapter 30 Magnetic Flux.
1 Faraday’s Law Chapter Ampere’s law Magnetic field is produced by time variation of electric field.
Lecture Outline Chapter 20 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Copyright © 2009 Pearson Education, Inc. Back EMF, Counter Torque & Eddy Currents Example: Back EMF in a Motor. The armature windings of a dc motor have.
Draw the magnetic field between two opposite poles. How will the north pole of a compass point if placed at points A-D?What dir. is the B-field at A-D?
Induction: Faraday’s Law
Magnetic Induction Chapter Induced currents
Chapter 31 Faraday’s Law.
© Shannon W. Helzer. All Rights Reserved. 1 Chapter 30 – Induction and Inductance.
Chapter 29 Electromagnetic Induction and Faraday’s Law
1 Electromagnetic Induction Chapter Induction A loop of wire is connected to a sensitive ammeter When a magnet is moved toward the loop, the ammeter.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
© 2010 Pearson Education, Inc. PowerPoint ® Lectures for College Physics: A Strategic Approach, Second Edition Chapter 25 Electromagnetic Induction and.
Electromagnetic Induction and Electromagnetic Waves!
Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley PowerPoint ® Lecture prepared by Richard Wolfson Slide Electromagnetic.
Chapter 29 Electromagnetic Induction and Faraday’s Law
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electromagnetic induction Lenz’s law Faraday’s law The nature of electromagnetic.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 34. Electromagnetic Induction Electromagnetic induction is the.
Review 1.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electromagnetic induction Lenz’s law Faraday’s law The nature of electromagnetic.
Chapter 29 Electromagnetic Induction and Faraday’s Law
© 2010 Pearson Education, Inc. Slide Electromagnetic Induction and Electromagnetic Waves.
Chapter 20 Electromagnetic Induction. Electricity and magnetism Generators, motors, and transformers.
Lecture 23—Faraday’s Law Electromagnetic Induction AND Review of Right Hand Rules Monday, March 30.
29. Electromagnetic Induction
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electromagnetic induction Lenz’s law Faraday’s law The nature of electromagnetic.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Magnets and the magnetic field Electric currents create magnetic fields.
Magnetism #2 Induced EMF Ch.20. Faraday’s Law of Induction We now know that a current carrying wire will produce its own magnetic field with the lines.
© Houghton Mifflin Harcourt Publishing Company Preview Objectives Electromagnetic Induction Characteristics of Induced Current Sample Problem Chapter 20.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
CH Review Changing the magnetic flux in a coil induces an emf around the coil. (As long as the coil is connected in a complete circuit, a current.
1 Magnetic flux [weber Wb], defines the amount of magnetic field (B [Tesla]) which travels perpendicular to an area A [m 2 ] Symbol: Ф Unit: Weber Wb A.
Problem 4 A metal wire of mass m can slide without friction on two parallel, horizontal, conducting rails. The rails are connected by a generator which.
Chapter 25 Lecture Presentation EM Induction and EM Waves © 2015 Pearson Education, Inc.
20 Overview current  magnetic field magnetic field  current
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
The Electromagnetic Spectrum
Chapter 20 Preview Objectives Electromagnetic Induction
Electromagnetism.
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
III. Electromagnetic Induction.
I2 is decreasing in magnitude I2 is constant
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Faraday’s Law.
Induction and Inductance Chapter 30
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Presentation transcript:

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electromagnetic induction Lenz’s law Faraday’s law The nature of electromagnetic waves The spectrum of electromagnetic waves Electromagnetic Induction and Electromagnetic Waves Topics: Sample question: The ultraviolet view of the flowers on the right shows markings that cannot be seen in the visible region of the spectrum. Whose eyes are these markings intended for? Slide 25-1

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Faraday’s Law Slide 25-15

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Using Lenz’s Law Slide 25-14

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A magnetic field goes through a loop of wire, as below. If the magnitude of the magnetic field is constant, what can we say about the current in the loop? A.The loop has a clockwise current. B.The loop has a counterclockwise current. C.The loop has no current. Slide Checking Understanding

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A magnetic field goes through a loop of wire, as below. If the magnitude of the magnetic field is constant, what can we say about the current in the loop? C.The loop has no current. Slide Answer

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A magnetic field goes through a loop of wire, as below. If the magnitude of the magnetic field is increasing, what can we say about the current in the loop? A.The loop has a clockwise current. B.The loop has a counterclockwise current. C.The loop has no current. Slide Checking Understanding

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A magnetic field goes through a loop of wire, as below. If the magnitude of the magnetic field is increasing, what can we say about the current in the loop? B.The loop has a counterclockwise current. Slide Answer

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A battery, a loop of wire, and a switch make a circuit below. A second loop of wire sits directly below the first. Immediately after the switch is closed, what can we say about the current in the lower loop? A.The loop has a clockwise current. B.The loop has a counterclockwise current. C.The loop has no current. Slide Checking Understanding

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A battery, a loop of wire, and a switch make a circuit below. A second loop of wire sits directly below the first. Immediately after the switch is closed, what can we say about the current in the lower loop? A.The loop has a clockwise current. Slide Answer

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A battery, a loop of wire, and a switch make a circuit below. A second loop of wire sits directly below the first. Long after the switch is closed, what can we say about the current in the lower loop? A.The loop has a clockwise current. B.The loop has a counterclockwise current. C.The loop has no current. Slide Checking Understanding

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A battery, a loop of wire, and a switch make a circuit below. A second loop of wire sits directly below the first. Long after the switch is closed, what can we say about the current in the lower loop? C.The loop has no current. Slide Answer

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A battery, a loop of wire, and a switch make a circuit below. A second loop of wire sits directly below the first. Immediately after the switch is reopened, what can we say about the current in the lower loop? A.The loop has a clockwise current. B.The loop has a counterclockwise current. C.The loop has no current. Slide Checking Understanding

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A battery, a loop of wire, and a switch make a circuit below. A second loop of wire sits directly below the first. Immediately after the switch is reopened, what can we say about the current in the lower loop? B.The loop has a counterclockwise current. Slide Answer

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. The figure shows a 10-cm-diameter loop in three different magnetic fields. The loop’s resistance is 0.1 Ω. For each situation, determine the strength and direction of the induced current. A coil used to produce changing magnetic fields in a TMS (transcranial magnetic field stimulation) device is connected to a high-current power supply. As the current ramps to hundreds or even thousands of amps, the magnetic field increases. In a typical pulsed-field machine, the current near the coil will go from 0 T to 2.5 T in a time of 200 µs. Suppose a technician holds his hand near the device, and this increasing field is directed along the axis of his hand—meaning the flux goes through his gold wedding band, which is 2.0 cm in diameter. What emf is induced in the ring? Slide 25-32

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A bar magnet sits inside a coil of wire that is connected to a meter. The bar magnet is pulled out of the coil. What can we say about the current in the meter? A.The current goes from right to left. B.The current goes from left to right. C.There is no current in the meter. Additional Clicker Questions Slide 25-44

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A bar magnet sits inside a coil of wire that is connected to a meter. The bar magnet is pulled out of the coil. What can we say about the current in the meter? A.The current goes from right to left. Slide Answer

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A bar magnet sits inside a coil of wire that is connected to a meter. The bar magnet is completely out of the coil and at rest. What can we say about the current in the meter? A.The current goes from right to left. B.The current goes from left to right. C.There is no current in the meter. Additional Clicker Questions Slide 25-46

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A bar magnet sits inside a coil of wire that is connected to a meter. The bar magnet is completely out of the coil and at rest. What can we say about the current in the meter? C.There is no current in the meter. Slide Answer

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A bar magnet sits inside a coil of wire that is connected to a meter. The bar magnet is reinserted into the coil. What can we say about the current in the meter? A.The current goes from right to left. B.The current goes from left to right. C.There is no current in the meter. Additional Clicker Questions Slide 25-48

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A bar magnet sits inside a coil of wire that is connected to a meter. The bar magnet is reinserted into the coil. What can we say about the current in the meter? B.The current goes from left to right. Slide Answer

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. 2.The outer coil of wire is 10 cm long, 2 cm in diameter, wrapped tightly with one layer of 0.5-mm-diameter wire, and has a total resistance of 1.0 Ω. It is attached to a battery, as shown, that steadily decreases in voltage from 12 V to 0 V in 0.5 s, then remains at 0 V for t > 0.5 s. The inner coil of wire is 1 cm long, 1 cm in diameter, has 10 turns of wire, and has a total resistance of 0.01 Ω. It is connected, as shown, to a current meter. a.As the voltage to the outer coil begins to decrease, in which direction (left-to-right or right-to-left) does current flow through the meter? Explain. b.Draw a graph showing the current in the inner coil as a function of time for 0 ≤ t ≤ 1 s. Include a numerical scale on the vertical axis. Slide Additional Examples

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley Back EMF and Counter Torque; Eddy Currents Induced currents can flow in bulk material as well as through wires. These are called eddy currents, and can dramatically slow a conductor moving into or out of a magnetic field.

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electromagnetic Waves Slide 25-33

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Maxwell established the following properties of electromagnetic waves 1)Electromagnetic waves are transverse waves 2)Electromagnetic waves can exist at any frequency, not just the frequencies of visible light. 3)Electromagnetic waves travel in a vacuum with the 4)At any point on the wave, the electric and magnetic fields are related by E = cB Electromagnetic Waves Slide 25-36

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Checking Understanding A plane electromagnetic wave has electric and magnetic fields at all points in the plane as noted below. With the fields oriented as shown, the wave is moving A.into the plane of the paper. B.out of the plane of the paper. C.to the left. D.to the right. E.toward the top of the paper. F.toward the bottom of the paper. Slide 25-34

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A plane electromagnetic wave has electric and magnetic fields at all points in the plane as noted below. With the fields oriented as shown, the wave is moving A.into the plane of the paper. Slide Answer

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. 1)Inside the cavity of a microwave oven, the 2.4 GHz electromagnetic waves have an intensity of 5.0 kW/m 2. What is the strength of the electric field? The magnetic field? 2)A digital cell phone emits a 1.9 GHz electromagnetic wave with total power 0.60 W. At a cell phone tower 2.0 km away, what is the intensity of the wave? (Assume that the wave spreads out uniformly in all directions.) What are the electric and magnetic field strengths at this distance? Electromagnetic Waves Carry Energy Slide 25-36

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Polarization Slide 25-37

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Light passed through a polarizing filter has an intensity of 2.0 W/m 2. How should a second polarizing filter be arranged to decrease the intensity to 1.0 W/m 2 ? Slide 25-38

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. The Electromagnetic Spectrum Slide 25-39

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A radio wave has a frequency of 100 MHz. What is the wavelength, and what is the energy of individual photons? Now, do the same calculations for a gamma ray of frequency 3.0 x ? Slide 25-40

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Thermal Emission Spectrum Slide 25-41