1 BoxRouter: A New Global Router Based on Box Expansion and Progressive ILP Minsik Cho and David Z. Pan ECE Dept. Univ. of Texas at Austin DAC 2006, July.

Slides:



Advertisements
Similar presentations
MIP-based Detailed Placer for Mixed-size Circuits Shuai Li, Cheng-Kok Koh ECE, Purdue University {li263,
Advertisements

Optimization of Placement Solutions for Routability Wen-Hao Liu, Cheng-Kok Koh, and Yih-Lang Li DAC’13.
Wen-Hao Liu1, Yih-Lang Li, and Cheng-Kok Koh Department of Computer Science, National Chiao-Tung University School of Electrical and Computer Engineering,
Meng-Kai Hsu, Sheng Chou, Tzu-Hen Lin, and Yao-Wen Chang Electronics Engineering, National Taiwan University Routability Driven Analytical Placement for.
Ripple: An Effective Routability-Driven Placer by Iterative Cell Movement Xu He, Tao Huang, Linfu Xiao, Haitong Tian, Guxin Cui and Evangeline F.Y. Young.
EXPLORING HIGH THROUGHPUT COMPUTING PARADIGM FOR GLOBAL ROUTING Yiding Han, Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy Electrical and.
1 Physical Hierarchy Generation with Routing Congestion Control Chin-Chih Chang *, Jason Cong *, Zhigang (David) Pan +, and Xin Yuan * * UCLA Computer.
Coupling-Aware Length-Ratio- Matching Routing for Capacitor Arrays in Analog Integrated Circuits Kuan-Hsien Ho, Hung-Chih Ou, Yao-Wen Chang and Hui-Fang.
Congestion Driven Placement for VLSI Standard Cell Design Shawki Areibi and Zhen Yang School of Engineering, University of Guelph, Ontario, Canada December.
International Conference on Computer-Aided Design San Jose, CA Nov. 2001ER UCLA UCLA 1 Congestion Reduction During Placement Based on Integer Programming.
38 th Design Automation Conference, Las Vegas, June 19, 2001 Creating and Exploiting Flexibility in Steiner Trees Elaheh Bozorgzadeh, Ryan Kastner, Majid.
ER UCLA UCLA ICCAD: November 5, 2000 Predictable Routing Ryan Kastner, Elaheh Borzorgzadeh, and Majid Sarrafzadeh ER Group Dept. of Computer Science UCLA.
A Diagonal-Interconnect Architecture and Its Application to RISC Core Design Mutsunori Igarashi, Takashi Mitsuhashi, Andy Le, Shardul Kazi, Yang-Trung.
VLSI Routing. Routing Problem  Given a placement, and a fixed number of metal layers, find a valid pattern of horizontal and vertical wires that connect.
Routing 1 Outline –What is Routing? –Why Routing? –Routing Algorithms Overview –Global Routing –Detail Routing –Shortest Path Algorithms Goal –Understand.
Reconfigurable Computing (EN2911X, Fall07)
Accurate Pseudo-Constructive Wirelength and Congestion Estimation Andrew B. Kahng, UCSD CSE and ECE Depts., La Jolla Xu Xu, UCSD CSE Dept., La Jolla Supported.
Metal Layer Planning for Silicon Interposers with Consideration of Routability and Manufacturing Cost W. Liu, T. Chien and T. Wang Department of CS, NTHU,
VLSI Physical Design Automation Prof. David Pan Office: ACES Lecture 18. Global Routing (II)
Congestion Estimation in Floorplanning Supervisor: Evangeline F. Y. YOUNG by Chiu Wing SHAM.
Lecture 5: FPGA Routing September 17, 2013 ECE 636 Reconfigurable Computing Lecture 5 FPGA Routing.
Chip Planning 1. Introduction Chip Planning:  Deals with large modules with −known areas −fixed/changeable shapes −(possibly fixed locations for some.
General Routing Overview and Channel Routing
CSE 242A Integrated Circuit Layout Automation Lecture: Global Routing Winter 2009 Chung-Kuan Cheng.
WISCAD – VLSI Design Automation GRIP: Scalable 3-D Global Routing using Integer Programming Tai-Hsuan Wu, Azadeh Davoodi Department of Electrical and Computer.
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig 1 FLUTE: Fast Lookup Table Based RSMT Algorithm.
Introduction to Routing. The Routing Problem Apply after placement Input: –Netlist –Timing budget for, typically, critical nets –Locations of blocks and.
MGR: Multi-Level Global Router Yue Xu and Chris Chu Department of Electrical and Computer Engineering Iowa State University ICCAD
A Topology-based ECO Routing Methodology for Mask Cost Minimization Po-Hsun Wu, Shang-Ya Bai, and Tsung-Yi Ho Department of Computer Science and Information.
Area-I/O Flip-Chip Routing for Chip-Package Co-Design Progress Report 方家偉、張耀文、何冠賢 The Electronic Design Automation Laboratory Graduate Institute of Electronics.
Authors: Jia-Wei Fang,Chin-Hsiung Hsu,and Yao-Wen Chang DAC 2007 speaker: sheng yi An Integer Linear Programming Based Routing Algorithm for Flip-Chip.
Global Routing. Global routing:  Sequential −One net at a time  Concurrent −Order-independent −ILP 2.
CRISP: Congestion Reduction by Iterated Spreading during Placement Jarrod A. Roy†‡, Natarajan Viswanathan‡, Gi-Joon Nam‡, Charles J. Alpert‡ and Igor L.
1 Coupling Aware Timing Optimization and Antenna Avoidance in Layer Assignment Di Wu, Jiang Hu and Rabi Mahapatra Texas A&M University.
TSV-Aware Analytical Placement for 3D IC Designs Meng-Kai Hsu, Yao-Wen Chang, and Valerity Balabanov GIEE and EE department of NTU DAC 2011.
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig 1 EECS 527 Paper Presentation High-Performance.
Archer: A History-Driven Global Routing Algorithm Mustafa Ozdal Intel Corporation Martin D. F. Wong Univ. of Illinois at Urbana-Champaign Mustafa Ozdal.
1 Wire Length Prediction-based Technology Mapping and Fanout Optimization Qinghua Liu Malgorzata Marek-Sadowska VLSI Design Automation Lab UC-Santa Barbara.
Maze Routing مرتضي صاحب الزماني.
Massachusetts Institute of Technology 1 L14 – Physical Design Spring 2007 Ajay Joshi.
Kwangsoo Han‡, Andrew B. Kahng‡† and Hyein Lee‡
Jason Cong‡†, Guojie Luo*†, Kalliopi Tsota‡, and Bingjun Xiao‡ ‡Computer Science Department, University of California, Los Angeles, USA *School of Electrical.
IO CONNECTION ASSIGNMENT AND RDL ROUTING FOR FLIP-CHIP DESIGNS Jin-Tai Yan, Zhi-Wei Chen 1 ASPDAC.2009.
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 6: Detailed Routing © KLMH Lienig 1 What Makes a Design Difficult to Route Charles.
GLARE: Global and Local Wiring Aware Routability Evaluation Yaoguang Wei1, Cliff Sze, Natarajan Viswanathan, Zhuo Li, Charles J. Alpert, Lakshmi Reddy,
ARCHER:A HISTORY-DRIVEN GLOBAL ROUTING ALGORITHM Muhammet Mustafa Ozdal, Martin D. F. Wong ICCAD ’ 07.
Huang-Yu Chen †, Mei-Fang Chiang †, Yao-Wen Chang † Lumdo Chen ‡, and Brian Han ‡ Novel Full-Chip Gridless Routing Considering Double-Via Insertion † The.
Congestion Estimation and Localization in FPGAs: A Visual Tool for Interconnect Prediction David Yeager Darius Chiu Guy Lemieux The University of British.
National Taiwan University PEAKASO: Peak-Temperature Aware Scan- Vector Optimization Minsik Cho and David Z. Pan Dept. of ECE The University of Texas at.
A Negotiated Congestion based Router for Simultaneous Escape Routing Q.Ma, T.Yan and Martin D.F. Wong Department of Electrical and Computer Engineering.
Physical Synthesis Comes of Age Chuck Alpert, IBM Corp. Chris Chu, Iowa State University Paul Villarrubia, IBM Corp.
Po-Wei Lee, Chung-Wei Lin, Yao-Wen Chang, Chin-Fang Shen, Wei-Chih Tseng NTU &Synopsys An Efficient Pre-assignment Routing Algorithm for Flip-Chip Designs.
1 A Min-Cost Flow Based Detailed Router for FPGAs Seokjin Lee *, Yongseok Cheon *, D. F. Wong + * The University of Texas at Austin + University of Illinois.
ECE 260B – CSE 241A /UCB EECS Kahng/Keutzer/Newton Physical Design Flow Read Netlist Initial Placement Placement Improvement Cost Estimation Routing.
Timing-Driven Routing for FPGAs Based on Lagrangian Relaxation
ILP-Based Inter-Die Routing for 3D ICs Chia-Jen Chang, Pao-Jen Huang, Tai-Chen Chen, and Chien-Nan Jimmy Liu Department of Electrical Engineering, National.
Maze Routing Algorithms with Exact Matching Constraints for Analog and Mixed Signal Designs M. M. Ozdal and R. F. Hentschke Intel Corporation ICCAD 2012.
Routability-driven Floorplanning With Buffer Planning Chiu Wing Sham Evangeline F. Y. Young Department of Computer Science & Engineering The Chinese University.
BOB-Router: A New Buffering-Aware Global Router with Over-the-Block Routing Resources Yilin Zhang1, Salim Chowdhury2 and David Z. Pan1 1 Department of.
Prof. Shiyan Hu Office: EERC 518
High-Performance Global Routing with Fast Overflow Reduction Huang-Yu Chen, Chin-Hsiung Hsu, and Yao-Wen Chang National Taiwan University Taiwan.
Design Automation Conference (DAC), June 6 th, Taming the Complexity of Coordinated Place and Route Jin Hu †, Myung-Chul Kim †† and Igor L. Markov.
FPGA Routing Pathfinder [Ebeling, et al., 1995] Introduced negotiated congestion During each routing iteration, route nets using shortest.
Register-Transfer (RT) Synthesis Greg Stitt ECE Department University of Florida.
XGRouter: high-quality global router in X-architecture with particle swarm optimization Frontiers of Computer Science, 2015, 9(4):576–594 Genggeng LIU,
Placement and Routing Algorithms. 2 FPGA Placement & Routing.
11 Yibo Lin 1, Xiaoqing Xu 1, Bei Yu 2, Ross Baldick 1, David Z. Pan 1 1 ECE Department, University of Texas at Austin 2 CSE Department, Chinese University.
VLSI Physical Design Automation
VLSI Physical Design Automation
2 University of California, Los Angeles
Presentation transcript:

1 BoxRouter: A New Global Router Based on Box Expansion and Progressive ILP Minsik Cho and David Z. Pan ECE Dept. Univ. of Texas at Austin DAC 2006, July 24-28

2 Introduction Global Routing – plans approximate route of each net to reduce complexity of detailed router Goal: Optimize wire density during global routing –Improve manufacturability –Potential to feedback interconnect information

3 Steps PreRouting captures congested areas BoxRouting starts in most congested area and expands box to cover entire chip Progressive integer linear programming (ILP) technique to route wires in box Maze routing algorithm for rest of wires PostRouting reroutes wires without rip-up –Parameter controls trade-off between length and routability

4 BoxRouter Route as many wires inside box as possible with ILP Maze routing algorithm if ILP fails

5 Algorithm

6 Steps 1) PreRouting – Identify congested area 2) Box around congested area 3) ILP routing between G-cells 4) Maze routing5) Expand box 6) Repeat

7 PostRouting Start from congested area Reroute wires to reduce length (if possible) Reroute surrounding wires Repeat Parameter controls cost function –Wirelength vs. routability

8 Experimental Results Larger box expansion can improve results at a cost of runtime Compared to Labyrinth –Reduce wirelength by 14.3% –Reduce overflow by 91.7% Compared to Fengshui –Reduce overflow by 79% Compared to multicommodity flow-based router –15.7x faster –4.2% shorter wirelength