Greg Challis Department of Chemistry Lecture 1: Methods for in silico analysis of cryptic natural product biosynthetic gene clusters Microbial Genomics.

Slides:



Advertisements
Similar presentations
Ufedo Ruby Awodi and Greg L. Challis
Advertisements

1. MOTIVATION Antibiotics are among the most frequently prescribed medications in modern medicine. However, there has been a decrease in the discovery.
Reading “Harnessing the biosynthetic code...” pp
Screening and genome mining of polyether-producing strains in actinomycetes Minghao Liu, Hao Wang, Ning Liu, Jisheng Ruan and Ying Huang* State Key Laboratory.
David Hopwood Lecture 1 (DH1). Isolation of microbes from soil: fungi, actinomycetes, other bacteria (left); streptomycetes (right)
Greg Challis Department of Chemistry Lecture 2: Methods for experimental identification of cryptic biosynthetic gene cluster products Microbial Genomics.
Epoxomicin: Assembly Line Engineering for Pharmaceutical Drug Production Using Natural Product Gene Clusters Anna Klavins, Haley Hoffman August 13, 2015.
Introduction: Polyketide and Nonribosomal Peptide Natural Products Doxorubicin -Antitumor agent Cyclosporin -Immunosuppressant Yersiniabactin -Siderophore.
Figure 1. Tyrocidine synthetase 1 (TycA) is the first component of the antibiotic tyrocidine biosynthetic system from bacterium Bacillus brevis. Full assembly.
Biosynthesis of Natural Products Nonribosomal Peptides
Reaction mechanism of iterative minimal polyketide synthases (PKS) Rasmus J.N. Frandsen 2007 University of Copenhagen, Faculty of Life.
Exploring the Domain Structure of Modular Nonribosomal Peptide Synthetases Thomas Weber, Mohamed A Marahiel Structure Volume 9, Issue 1, Pages R3-R9 (January.
David Hopwood Lecture 2 (DH2). Part 1 Aspects of the programming of Type II PKSs (a) Chain length control Tang, Tsai & Khosla (2003) JACS 125: Keatings-Clay,
Understanding biosynthesis of complex metabolites
The 2nd International Symposium
Cracking the NRPS Code Nick Till Computational Biology
In silico identification of novel biosynthetic pathways in Mycobacteria Tuberculosis Research – An Indian Perspective (TRIP) AstraZeneca India 20 Oct 2005.
Traditional approach for bioactive natural product discovery fractionation extraction Investigate bioactivity of extract Identify active fraction(s) and.
Computational genomic strategies for natural product discovery
Greg Challis Department of Chemistry, University of Warwick, UK
Katharina M. Hoyer, Christoph Mahlert, Mohamed A. Marahiel 
Volume 14, Issue 1, Pages (January 2007)
Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains  Gregory L Challis, Jacques Ravel,
Mechanism of Thioesterase-Catalyzed Chain Release in the Biosynthesis of the Polyether Antibiotic Nanchangmycin  Tiangang Liu, Xin Lin, Xiufen Zhou, Zixin.
Evidence for a Monomeric Structure of Nonribosomal Peptide Synthetases
Thomas Weber, Mohamed A Marahiel  Structure 
Melithiazol Biosynthesis
Volume 10, Issue 5, Pages (May 2003)
Identification and Characterization of the Lysobactin Biosynthetic Gene Cluster Reveals Mechanistic Insights into an Unusual Termination Module Architecture 
Lessons from the Past and Charting the Future of Marine Natural Products Drug Discovery and Chemical Biology  William H. Gerwick, Bradley S. Moore  Chemistry.
Kento Koketsu, Hiroki Oguri, Kenji Watanabe, Hideaki Oikawa 
Volume 19, Issue 3, Pages (March 2012)
Volume 8, Issue 4, Pages (April 2000)
Volume 7, Issue 11, Pages (November 2000)
Volume 8, Issue 4, Pages (April 2001)
Volume 15, Issue 11, Pages (November 2008)
Benoit Villiers, Florian Hollfelder  Chemistry & Biology 
Volume 10, Issue 5, Pages (May 2003)
Volume 10, Issue 3, Pages (March 2002)
Evidence for a Protein-Protein Interaction Motif on an Acyl Carrier Protein Domain from a Modular Polyketide Synthase  Kira J. Weissman, Hui Hong, Bojana.
Formation of functional heterologous complexes using subunits from the picromycin, erythromycin and oleandomycin polyketide synthases  Li Tang, Hong Fu,
Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular.
Volume 7, Issue 10, Pages (October 2000)
Volume 20, Issue 6, Pages (June 2013)
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Volume 9, Issue 2, Pages (February 2002)
Volume 22, Issue 6, Pages (June 2015)
Volume 15, Issue 8, Pages (August 2008)
Structural Basis for Phosphopantetheinyl Carrier Domain Interactions in the Terminal Module of Nonribosomal Peptide Synthetases  Ye Liu, Tengfei Zheng,
Gerald Lackner, Markus Bohnert, Jonas Wick, Dirk Hoffmeister 
Volume 10, Issue 5, Pages (May 2003)
Microbial Molecules from the Multitudes within Us
Volume 12, Issue 2, Pages (February 2005)
Volume 17, Issue 3, Pages (March 2010)
Leinamycin Biosynthesis Revealing Unprecedented Architectural Complexity for a Hybrid Polyketide Synthase and Nonribosomal Peptide Synthetase  Gong-Li.
Volume 7, Issue 2, Pages (February 2000)
Volume 17, Issue 2, Pages (February 2010)
Volume 17, Issue 2, Pages (February 2010)
Volume 7, Issue 2, Pages (February 2000)
Volume 14, Issue 6, Pages (June 2007)
Flexing and Stretching in Nonribosomal Peptide Synthetases
Alignment of the deduced amino acid sequences of the myosin light chain 2 (MLC2) proteins. Alignment of the deduced amino acid sequences of the myosin.
Volume 12, Issue 3, Pages (March 2005)
Cracking the Nonribosomal Code
Benoit Villiers, Florian Hollfelder  Chemistry & Biology 
Volume 9, Issue 11, Pages (November 2002)
Nonribosomal Biosynthesis of Fusaricidins by Paenibacillus polymyxa PKB1 Involves Direct Activation of a d-Amino Acid  Jingru Li, Susan E. Jensen  Chemistry.
A One-Pot Chemoenzymatic Synthesis for the Universal Precursor of Antidiabetes and Antiviral Bis-Indolylquinones  Patrick Schneider, Monika Weber, Karen.
Volume 22, Issue 6, Pages (June 2015)
Strategies for Engineering Natural Product Biosynthesis in Fungi
Presentation transcript:

Greg Challis Department of Chemistry Lecture 1: Methods for in silico analysis of cryptic natural product biosynthetic gene clusters Microbial Genomics and Secondary Metabolites Summer School, MedILS, Split, Croatia, June 2007

Overview Introduction cryptic (orphan) gene clusters in microbial genomes Clusters encoding nonribosomal peptide synthetases (NRPSs) domains, modules, substrate specificity, predicting products Clusters encoding modular polyketide synthases (PKSs) domains, modules, substrate specificity, predicting products Clusters encoding other biosynthetic systems terpene synthases, iterative PKSs

Introduction

‘Cryptic’ (orphan) biosynthetic gene clusters Present in many of the 300 or so sequenced microbial genomes e.g. Streptomyces avermitilis Streptomyces coelicolor Bacillus subtilis Pseudomonas fluorescens Pseudomonas syringae Nostoc punctiforme Aspergillus nidulans May prove a valuable new source of bioactive metabolites Polyketide synthases Nonribosomal peptide synthetases Terpene synthases

Genome sequence of the model antibiotic- producer Streptomyces coelicolor M145

Gene clusters directing complex metabolite biosynthesis in the S. coelicolor genome Bentley et al. Nature (2002) 417,

Part 1: Nonribosomal peptide synthetase analysis

Recap of NRPS organisation and function: the gramicidin S synthetase as an example AECAAACCCATE module 1 module 2 module 3 module 4 module 5 grsAgrsBgrsT synthetase 1synthetase 2 PCP A = Adenylation PCP = peptidyl carrier protein C = Condensation E = Epimerisation TE = Thioesterase

Recap of NRPS organisation and function: the gramicidin S synthetase as an example TE PCP For further information see Lars Robbel’s poster

Nonribosomal peptide synthetases encoded by the S. coelicolor genome

A new S. coelicolor NRPS gene cluster cchAcchBcchH Flavin-dependent monooxygenase (cchB) Non-ribosomal peptide synthetase (cchH) Formyl-tetrahydrofolate-dependent formyl transferase (cchA) MbtH-like protein (cchK) Esterase (cchJ) Challis and Ravel FEMS Microbiol. Lett. (2000) 187, Export functions Ferric-siderophore import cchJcchI

Prediction of domain and module structure Conserved Domain (CD) search ( Deduced domain and module organization

Prediction of A-domain selectivity pocket residues GrsA DASVWEMFMALLTGASLYIILKDTINDFVKFEQYINQKEITVITLPPTYVVHL-----DPERILSIQTLITAGSATSPSLVNKWKEK--VTYINAYGPTETTI Ncs1-M1 DIAVWELLAAFVGGARLVIAEHRLRGVVPHLPELMTDHRVTVAHFVPSVLEELLGWMADGGRVG-LRLVVCGGEAVPPSQRDRLLALSGARMVHAYGPTETTI GrsA D A W T I A A I Ncs1-M1 D I W H V G A I Stachelhaus, Mootz and Marahiel Chem. Biol. (1999) 6, Challis, Ravel and Townsend Chem. Biol. (2000) 7,

Empirical correlation between specificity pocket residues and substrate Challis, Ravel and Townsend Chem. Biol. (2000) 7,

Prediction of substrates and possible products for the S. coelicolor cryptic NRPS Challis and Ravel FEMS Microbiol. Lett. (2000) 187,

Part 2: Modular polyketide synthase analysis

Three large modular enzymes (DEBS 1- 3), encoded by eryAI, eryAII, and eryAIII, assemble 6-DEB Each module performs one chain extension Recap of modular PKS organisation and function: the erythromycin synthase as an example

-CO 2

Three large modular enzymes (DEBS 1- 3), encoded by eryAI, eryAII, and eryAIII, assemble 6-DEB Each module performs one chain extension Recap of modular PKS organisation and function: the erythromycin synthase as an example

Gene clusters directing complex metabolite biosynthesis in the S. coelicolor genome Bentley et al. Nature (2002) 417,

A new S. coelicolor modular PKS cluster Genes encoding a modular PKS

Prediction of domain and modules in CpkA Conserved Domain (CD) search (

Prediction of domain and modules in CpkB

Prediction of domain and modules in CpkC

Prediction of domains and modules in CpkABC Pawlik, Kotowska, Chater, Kuczek and Takano Arch. Microbiol. (2007) 187, 87-99

Prediction of AT domain substrate selectivity Haydock et al. FEBS Lett. (1995) 374, Banskota et al. J. Antibiot. (2006) 59,

Prediction of KR domain stereoselectivity

Caffrey ChemBioChem (2003) 4, Reid et al. Biochemistry (2003) 42, 72-79

Prediction of substrates and possible products for the S. coelicolor cryptic PKS

Non-linear enzymatic logic can complicate things! Haynes and Challis, Curr. Op. Drug Discov. Develop. (2007) 10,

Non-linear enzymatic logic can complicate things! Haynes and Challis, Curr. Op. Drug Discov. Develop. (2007) 10,

Part 3: Analysis of other biosynthetic systems

Terpene synthases

Iterative polyketide synthases – type III PKSs

Conclusions Reasonably confident in silico predictions of domain / module organisation and substrate specificity of modular PKS / NRPS can be made Non-linear enzymatic logic can complicate the reliable prediction of product structure(s) For other types of biosynthetic system, reasonably confident predictions of substrate specificity can sometimes be made Prediction of chain length and substrate specificity in some iterative PKS systems, especially type III and fungal type I, remains difficult