Lecture 34: Chapter 5 Today’s topic –Virtual Memories 1.

Slides:



Advertisements
Similar presentations
Virtual Memory 1 Computer Organization II © McQuain Virtual Memory Use main memory as a cache for secondary (disk) storage – Managed jointly.
Advertisements

Virtual Memory In this lecture, slides from lecture 16 from the course Computer Architecture ECE 201 by Professor Mike Schulte are used with permission.
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
1 Lecture 13: Cache and Virtual Memroy Review Cache optimization approaches, cache miss classification, Adapted from UCB CS252 S01.
EECS 470 Virtual Memory Lecture 15. Why Use Virtual Memory? Decouples size of physical memory from programmer visible virtual memory Provides a convenient.
Virtual Memory main memory can act as a cache for secondary storage motivation: Allow programs to use more memory that there is available transparent to.
Computer Organization CS224 Fall 2012 Lesson 44. Virtual Memory  Use main memory as a “cache” for secondary (disk) storage l Managed jointly by CPU hardware.
Caching IV Andreas Klappenecker CPSC321 Computer Architecture.
Cs 325 virtualmemory.1 Accessing Caches in Virtual Memory Environment.
Memory/Storage Architecture Lab Computer Architecture Virtual Memory.
The Memory Hierarchy (Lectures #24) ECE 445 – Computer Organization The slides included herein were taken from the materials accompanying Computer Organization.
Chapter 101 Virtual Memory Chapter 10 Sections and plus (Skip:10.3.2, 10.7, rest of 10.8)
CSCE 212 Chapter 7 Memory Hierarchy Instructor: Jason D. Bakos.
1 Lecture 20 – Caching and Virtual Memory  2004 Morgan Kaufmann Publishers Lecture 20 Caches and Virtual Memory.
The Memory Hierarchy II CPSC 321 Andreas Klappenecker.
Technical University of Lodz Department of Microelectronics and Computer Science Elements of high performance microprocessor architecture Virtual memory.
Translation Buffers (TLB’s)
Virtual Memory. Why do we need VM? Program address space: 0 – 2^32 bytes –4GB of space Physical memory available –256MB or so Multiprogramming systems.
©UCB CS 162 Ch 7: Virtual Memory LECTURE 13 Instructor: L.N. Bhuyan
1  1998 Morgan Kaufmann Publishers Chapter Seven Large and Fast: Exploiting Memory Hierarchy (Part II)
©UCB CS 161 Ch 7: Memory Hierarchy LECTURE 24 Instructor: L.N. Bhuyan
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
Lecture 33: Chapter 5 Today’s topic –Cache Replacement Algorithms –Multi-level Caches –Virtual Memories 1.
Computer Architecture Lecture 28 Fasih ur Rehman.
Lecture 19: Virtual Memory
Lecture 15: Virtual Memory EEN 312: Processors: Hardware, Software, and Interfacing Department of Electrical and Computer Engineering Spring 2014, Dr.
July 30, 2001Systems Architecture II1 Systems Architecture II (CS ) Lecture 8: Exploiting Memory Hierarchy: Virtual Memory * Jeremy R. Johnson Monday.
The Memory Hierarchy 21/05/2009Lecture 32_CA&O_Engr Umbreen Sabir.
IT253: Computer Organization
Virtual Memory Expanding Memory Multiple Concurrent Processes.
1 Virtual Memory Main memory can act as a cache for the secondary storage (disk) Advantages: –illusion of having more physical memory –program relocation.
Virtual Memory Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University.
CS2100 Computer Organisation Cache II (AY2010/2011) Semester 2.
Multilevel Caches Microprocessors are getting faster and including a small high speed cache on the same chip.
1 Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4.
1  2004 Morgan Kaufmann Publishers Chapter Seven Memory Hierarchy-3 by Patterson.
CS2100 Computer Organisation Virtual Memory – Own reading only (AY2015/6) Semester 1.
Virtual Memory Ch. 8 & 9 Silberschatz Operating Systems Book.
Virtual Memory Review Goal: give illusion of a large memory Allow many processes to share single memory Strategy Break physical memory up into blocks (pages)
Virtual Memory 1 Computer Organization II © McQuain Virtual Memory Use main memory as a “cache” for secondary (disk) storage – Managed jointly.
The Memory Hierarchy Lecture 31 20/07/2009Lecture 31_CA&O_Engr. Umbreen Sabir.
Memory Management memory hierarchy programs exhibit locality of reference - non-uniform reference patterns temporal locality - a program that references.
Virtual Memory Chapter 8.
CS161 – Design and Architecture of Computer
Lecture 11 Virtual Memory
ECE232: Hardware Organization and Design
Memory COMPUTER ARCHITECTURE
CS161 – Design and Architecture of Computer
CS352H: Computer Systems Architecture
Lecture 12 Virtual Memory.
Virtual Memory User memory model so far:
CS 704 Advanced Computer Architecture
Virtual Memory Use main memory as a “cache” for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs share main.
Morgan Kaufmann Publishers
Morgan Kaufmann Publishers
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
COSC121: Computer Systems. Managing Memory
Chapter 4 Large and Fast: Exploiting Memory Hierarchy Part 2 Virtual Memory 박능수.
Lecture 28: Virtual Memory-Address Translation
ECE 445 – Computer Organization
Morgan Kaufmann Publishers Memory Hierarchy: Virtual Memory
Translation Buffers (TLB’s)
Translation Buffers (TLB’s)
CSC3050 – Computer Architecture
Computer Architecture
Virtual Memory Lecture notes from MKP and S. Yalamanchili.
Translation Buffers (TLBs)
Virtual Memory Use main memory as a “cache” for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs share main.
Virtual Memory.
Review What are the advantages/disadvantages of pages versus segments?
Presentation transcript:

Lecture 34: Chapter 5 Today’s topic –Virtual Memories 1

Associative Cache Example 2 The location of the block with address ‘12’ varies depending on the type of the cache memory and degree of associativity. In a direct mapped of size 8 blocks, the memory address ‘12’ is associated with the block address ‘4’ in the cache memory because 12 = (1100) 2 Thus (12 modulo 8) = 4 = (100) 2 is used to find location in the cache. In a 2-way set associative, there will be 4 sets. Thus, the corresponding location is cash is the block number (12 modulo 4) = 0. In a full associative scenario, the memory block for block address 12 can appear in any of the eight cache blocks.

Set Associative Cache Organization 3

Replacement Policy Direct mapped: no choice Set associative –Prefer non-valid entry, if there is one –Otherwise, choose among entries in the set Least-recently used (LRU) –Choose the one unused for the longest time Simple for 2-way, manageable for 4-way, too hard beyond that Random –Gives approximately the same performance as LRU for high associativity 4

Virtual Memory Use main memory as a “cache” for secondary (disk) storage –Managed jointly by CPU hardware and the operating system (OS) Programs share main memory –Each gets a private virtual address space holding its frequently used code and data –Protected from other programs CPU and OS translate virtual addresses to physical addresses –VM “block” is called a page –VM translation “miss” is called a page fault 5

Address Translation Fixed-size pages (e.g., 4K) The page size is 4K = The number of physical pages allowed in memory is 2 18 since the physical page number has 18 bits in it. Thus, main memory can have at most 1GB while the virtual address space is 4GB. 6

Page Fault Penalty On page fault, the page must be fetched from disk –Takes millions of clock cycles –Handled by OS code Try to minimize page fault rate –Fully associative placement –Smart replacement algorithms 7

Page Tables Stores placement information –Array of page table entries, indexed by virtual page number –Page table register in CPU points to page table in physical memory If page is present in memory –PTE stores the physical page number –Plus other status bits (referenced, dirty, …) If page is not present –PTE can refer to location in swap space on disk 8

Translation Using a Page Table 9

Mapping Pages to Storage 10

Replacement and Writes To reduce page fault rate, prefer least- recently used (LRU) replacement –Reference bit (aka use bit) in PTE set to 1 on access to page –Periodically cleared to 0 by OS –A page with reference bit = 0 has not been used recently Disk writes take millions of cycles –Block at once, not individual locations –Write through is impractical –Use write-back –Dirty bit in PTE set when page is written 11

Fast Translation Using a TLB Address translation would appear to require extra memory references –One to access the PTE –Then the actual memory access But access to page tables has good locality –So use a fast cache of PTEs within the CPU –Called a Translation Look-aside Buffer (TLB) –Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss, 0.01%–1% miss rate –Misses could be handled by hardware or software 12

Fast Translation Using a TLB 13

TLB Misses If page is in memory –Load the PTE from memory and retry –Could be handled in hardware Can get complex for more complicated page table structures –Or in software Raise a special exception, with optimized handler If page is not in memory (page fault) –OS handles fetching the page and updating the page table –Then restart the faulting instruction 14