Utrecht, 16/02/2012 Quantifying the AMOC feedbacks during a 2xCO2 stabilization experiment with land-ice melting Swingedouw Didier.

Slides:



Advertisements
Similar presentations
Didier Swingedouw Laboratoire des Sciences du Climat et de l’Environnement France Projections of the thermohaline circulation in OAGCMs: toward an understanding.
Advertisements

The ocean and the global hydrologic cycle Jim Carton (University of Maryland) Paulo Nobre (INPE) São Paulo Summer School on Global Climate Modeling October,
Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions Didier Swingedouw, Pablo Ortega, Juliette Mignot, Eric.
Modeling the MOC Ronald J Stouffer Geophysical Fluid Dynamics Laboratory NOAA The views described here are solely those of the presenter and not of GFDL/NOAA/DOC.
Slide 1 Predicting the Climate of Europe: the THOR project Laurent Mortier – University of Paris for Detlef Quadfasel (co-ordinator), University of Hamburg.
AMOC MULTI-DECADAL VARIABILITY: MECHANISMS, THEIR ROBUSTNESS, AND IMPACTS OF MODEL CONFIGURATIONS Gokhan Danabasoglu and Steve Yeager National Center for.
Decadal fingerprints of fresh water discharge around Greenland in a multi-models ensemble Swingedouw D., Rodehacke C., Behrens E., Menary M., Olsen S.,
Initialisation, predictability and future of the AMOC Didier Swingedouw Juliette Mignot, Romain Escudier, Sonia Labetoulle, Eric Guilyardi Christian Rodehacke,
Didier Swingedouw (1), Fichefet T. (1), Huybrechts P. (2), Goosse H. (1), Driesschaert E, Loutre M.-F (1), (1) Université catholique de Louvain, Institut.
Earth Systems Science Chapter 5 OCEAN CIRCULATION I: SURFACE Winds, surface currents Flow within gyres: convergence, divergence, upwelling, downwelling,
SIO 210 Advection, transports, budgets L. Talley, Fall, 2014
David S. Battisti University of Washington What controls the location of the sea ice edge in the N. Atlantic? Why do we care? 1.Motivation 2.Impact of.
Sea-ice & the cryosphere
Thermohaline Circulation
Thermohaline Circulation Carisa Sousa. Description Defining - terminology –Meridional Overturning Movement –“Overturning” - Pacific and Indian Oceans.
Chapter 9.
On the reduced sensitivity of the Atlantic overturning to Greenland ice sheet melting in projections: a multi-model assessment Swingedouw D., Rodehacke.
Potential temperature ( o C, Levitus 1994) Surface Global zonal mean.
European capacity building initiativeecbi Climate Change: an Introduction ecbi Workshops 2007 Claire N Parker Environmental Policy Consultant european.
Abigail Spieler Oral Examination Presentation March 28, 2005
Model LSW formation rate (2 yr averages) estimated from: (red) CFC-12 inventories, (black) mixed layer depth and (green) volume transport residual. Also.
Didier Swingedouw, Laurent Terray, Christophe Cassou, Aurore Voldoire, David Salas-Mélia, Jérôme Servonnat CERFACS, France ESCARSEL project Natural forcing.
Mode (Eighteen Degree) Water V.Y. Chow EPS Dec 2005.
Ice-ocean interactions and the role of freshwater input Didier Swingedouw, Adele Morisson, Hugues Goosse.
Volcanic source of decadal predictability in the North Atlantic Didier Swingedouw, Juliette Mignot, Sonia Labetoulle, Eric Guilyardi, Gurvan Madec.
Transport in the Subpolar and Subtropical North Atlantic
Impact of freshwater release in the Southern Ocean on the Atlantic Didier Swingedouw.
Didier Swingedouw, Laurent Terray, Christophe Cassou, Aurore Voldoire, David Salas-Mélia, Jérôme Servonnat CERFACS, France ESCARSEL project Natural forcing.
Thermohaline Ocean Circulation Stefan Rahmstorf. What is Thermohaline Circulation? Part of the ocean circulation which is driven by fluxes of heat and.
Abrupt changes in the Labrador Sea within CMIP5
Bruegel : The Harvesters (1565) Mechanisms for European summer temperature response to solar forcing over the last millennium Swingedouw D., Terray L.,
Northern and southern influences on the MOC Claus Böning (IFM-GEOMAR, Kiel) with Arne Biastoch, Markus Scheinert, Erik Behrens Northern and southern influences.
Global Warming And the Planetary Water Cycle Ruth Curry Woods Hole Oceanographic Institution Ruth Curry Woods Hole Oceanographic Institution Global Warming.
Didier Swingedouw (1), Fichefet T. (1), Huybrechts P. (2), Goosse H. (1), Driesschaert E, Loutre M.-F (1), (1) Université catholique de Louvain, Institut.
Thermohaline Circulation Lecture Outline 1)What is thermohaline circulation 2)History of understanding 3)Key water masses 4)Formation of deep water 5)Theory.
Global Ocean Circulation (2) 1.Wind-driven gyre-scale circulation of the surface ocean and upper thermocline 2.Global heat and freshwater water transport,
Climate Change: an Introduction ecbi Workshops 2007 Claire N Parker Environmental Policy Consultant european capacity building initiative initiative européenne.
Nov.8, 2005CORE III protocol, Hobart Reaction of the oceanic circulation to increased melt water flux from Greenland - a test case for ocean general circulation.
Paris, EU-THOR, Nov25-26, 2009 Response of the North Atlantic Circulation to the realistic and anomalous wind stress Yongqi Gao, Helge Drange, Mats Bentsen.
The Kiel runs [ORCA025-KAB001 and KAB002] Arne Biastoch IFM-GEOMAR.
Core Theme 5 – WP 17 Overview on Future Scenarios - Update on WP17 work (5 european modelling groups : IPSL, MPIM, Bern, Bergen, Hadley) - Strong link.
Didier Swingedouw CERFACS, Toulouse, France Response of the AMOC to global warming: role of ice sheets melting and AMOC feedbacks.
Didier Swingedouw LSCE, France Large scale signature of the last millennium variability: challenges for climate models.
The Conveyer Belt EEn  Ocean circulation travels from the Atlantic Ocean through the Indian & Pacific oceans & back again  Warm water in upper.
The CHIME coupled climate model Alex Megann, SOC 26 January 2005 (with Adrian New, Bablu Sinha, SOC; Shan Sun, NASA GISS; Rainer Bleck, LANL)  Introduction.
Didier Swingedouw, Masa Kageyama, Juliette Mignot,
OUTLINE Examples of AMOC variability and its potential predictability, Why we care, Characteristics of AMOC variability in a CCSM3 present-day control.
Can freshwater input in the Mediterranean Sea impact large-scale climate? Didier Swingedouw, Pierre Sepulchre, Christophe Colin, Giovanni Sgubin.
 p and  surfaces are parallel =>  =  (p) Given a barotropic and hydrostatic conditions, is geostrophic current. For a barotropic flow, we have and.
Salinity and Density Differences VERTICAL STRUCTURE, THERMOHALINE CIRCULATION & WATER MASSES.
On the effect of the Greenland Scotland Ridge on the dense water formation in the Nordic Seas Dorotea Iovino NoClim/ProClim meeting 4-6 September 2006.
Coastal Oceanography Outline Global coastal ocean Dynamics Western boundary current systems Eastern boundary current systems Polar ocean boundaries Semi-enclosed.
OCEAN CIRCULATION. DENSITY OF SEAWATER DENSITY INCREASES DEPTH INCREASES TEMP DECREASES SALINITY INCREASES EFFECT OF TEMP > EFFECT OF SALINITY.
10/24/03search_osm_10_032 Abrupt Change in Deep Water Formation in the Greenland Sea: Results from Hydrographic and Tracer Time Series SEARCH Open Science.
Dmitry Dukhovskoy, Andrey Proshutinsky and Mary-Louise Timmermans Center for Ocean-Atmospheric Prediction Studies Florida State University Acknowledgement:
Influence of volcanic eruptions on the bi-decadal variability in the North Atlantic Didier Swingedouw, Juliette Mignot, Eric Guilyardi, Pablo Ortega, Myriam.
Seasonal Variations of MOC in the South Atlantic from Observations and Numerical Models Shenfu Dong CIMAS, University of Miami, and NOAA/AOML Coauthors:
Global Warming And the Planetary Water Cycle Ruth Curry Woods Hole Oceanographic Institution Ruth Curry Woods Hole Oceanographic Institution Global Warming.
I. Objectives and Methodology DETERMINATION OF CIRCULATION IN NORTH ATLANTIC BY INVERSION OF ARGO FLOAT DATA Carole GRIT, Herlé Mercier The methodology.
Our water planet and our water hemisphere
Jake Langmead-Jones The Role of Ocean Circulation in Climate Simulations, Freshwater Hosing and Hysteresis Jake Langmead-Jones.
Two stable equilibria of the Atlantic subpolar gyre
Samuel SOMOT1 and Michel CREPON2
Towards a new reanalysis with the IPSL climate model
OCEAN RESPONSE TO AIR-SEA FLUXES Oceanic and atmospheric mixed
North Atlantic Sub-Polar Gyre
Advertisement Ocean Circulation in Three Dimensions
COAPS, Florida State University
Heat Transport by the Atmosphere and ocean
Presentation transcript:

Utrecht, 16/02/2012 Quantifying the AMOC feedbacks during a 2xCO2 stabilization experiment with land-ice melting Swingedouw Didier

Utrecht, 16/02/2012 AMOC spread in projections Large spread of AMOC response to GHG emissions Gregory et al. 2005: heat flux and freshwater flux both play a role Need for understanding processes Even for a given forcing: large spread Stouffer et al Schneider et al., 2007

Utrecht, 16/02/2012 Opposing effects for the water coming from the Arctic and the tropics AMOC and salinity forcing Swingedouw et al. 2007a Evaporation Precipitations Runoff Humidity transport Salinity advection

Utrecht, 16/02/2012 Actuel Opposing effects for the water coming from the Arctic and the tropics AMOC and salinity forcing Swingedouw et al. 2007a Evaporation Precipitations Runoff Humidity transport Salinity advection

Utrecht, 16/02/2012 ActuelFutur Opposing effects for the water coming from the Arctic and the tropics AMOC and salinity forcing Swingedouw et al. 2007a Evaporation Precipitations Runoff Humidity transport Salinity advection

Utrecht, 16/02/2012 ActuelFutur Opposing effects for the water coming from the Arctic and the tropics AMOC and salinity forcing Swingedouw et al. 2007a Evaporation Precipitations Runoff Humidity transport Salinity advection

Utrecht, 16/02/2012 ActuelFutur Opposing effects for the water coming from the Arctic and the tropics AMOC and salinity forcing Swingedouw et al. 2007a Evaporation Precipitations Runoff Humidity transport Salinity advection

Utrecht, 16/02/2012 ActuelFutur Opposing effects for the water coming from the Arctic and the tropics AMOC and salinity forcing Swingedouw et al. 2007a Evaporation Precipitations Runoff Humidity transport Salinity advectin

Utrecht, 16/02/2012 ActuelFutur Opposing effects for the water coming from the Arctic and the tropics AMOC and salinity forcing Swingedouw et al. 2007a Evaporation Precipitations Runoff Humidity transport Salinity advectin

Utrecht, 16/02/2012 Effect – Effect + Oceanic meridional advection Temperature density flux Salinity density flux AMOCiFCMs AMOC internal feedbacks Stocker et al., 2001

Utrecht, 16/02/2012 Effect – Effect + Oceanic meridional heat transport Oceanic meridional advection Meridional atmospheric Temperature gradient Sea ice amount Brine rejection Ekman divergence Freshwater meridional transport Sea ice transport and melting Temperature density flux Salinity density flux Salinity density flux THCeTCMOs Stocker et al., 2001 AMOCi AMOC internal feedbacks

Utrecht, 16/02/2012 Questions How to quantify the mechanisms explaining the response of the AMOC to GHG increase? Can an additional freshwater input lead to substantial AMOC weakening in projections? What are the roles of feedbacks and forcing for the response of the AMOC?

Utrecht, 16/02/2012 Experimental design Snow Land Ocean Ice IPSL-CM4 model: OPA-ORCA2 (0.5°-2°) LMDz (2.5° x 3.75°) 2xCO2 scenario lasting for 500 years: With ice sheet melting No ice sheet melting Net heat flux Temps (année s) CO2 (ppm) CTL No With Time (years)) (Swingedouw et al. 2007b)

Utrecht, 16/02/2012 AMOC and convection sites Climatology: Boyer Montegut et al., 2005IPSL-CM4: CTL In CTL simulation: AMOC max. of only 11 Sv (obs. around 18 Sv ) No convection in the Labrador Sea Overflow of 5.6 Sv (obs. around 6 Sv) JFM mixed layer depth

Utrecht, 16/02/2012 Greenland ice sheet (GrIS) melting amounts to 0.13 Sv after 200 years and is then constant Equivalent melting of GrIS by more than 50% after 500 years=very agressive melting scenario With CTL No AMOC index Tem ps (ann ées) CO2 (ppm) CTL No With Time (years) ) Temps (année s) CTL No With Global temperature Model responses

Utrecht, 16/02/2012 AMOC and density in the convection sites Correlation of 0.98 between density in the black box and the AMOC: t=0 No-CTL With-CTL

Name of the meeting, 20/06/2011 Influence of haline and thermal response on the AMOC With melting: Changes in temperature (T) and salinity (S) weakens the density (and AMOC)

Name of the meeting, 20/06/2011 Influence of haline and thermal response on the AMOC With melting: Changes in temperature (T) and salinity (S) weakens the density (and AMOC) No melting: Salinity changes explain the recovery

Utrecht, 16/02/2012 Density budget in the convection box Transport Surface

Utrecht, 16/02/2012 Density buget in the convection box after 500 years AMOC increases AMOC decreases Transport SurfaceResidualBudget No-CTL With-CTL

Utrecht, 16/02/2012 Transport SurfaceRésiduBilan Sans-CTRL Avec-CTRL AMOC increases AMOC decreases Density buget in the convection box after 500 years

Utrecht, 16/02/2012 Synthesis of important factor explaining density budget in No ice sheet melting Over 500 years AMOC reduction mainly caused by: o Warming in the convection sites (26 %) o Salinity transport by the overturning (65 %) AMOC recovery mainly caused by: o Transport of salinity anomalies by the gyre (40 %) o Sea ice melting reduction in the convection sites (28 %)

Utrecht, 16/02/2012 Sea ice melting anomalies CTL: Sea ice transport through Fram Strait Brine rejection in winter when sea ice forms + = No melting projections (after 500 years): Sea ice transport decreases Brine rejection decreases Sv Sea ice transport in CTL CTL No

Utrecht, 16/02/2012 Salinity anomalies in the Atlantic SSS anomalies: No melting - CTL

Utrecht, 16/02/2012 Feedback amplification Linear feedback model (Hansen et al., 1984, for climate sensitivity): G 0 : Static gain λ i : Feedback factors + -

Utrecht, 16/02/2012 Feedback quantification methology now stands for the difference between the projections We isolate GrIS melting effect: wit h

Utrecht, 16/02/2012 Quantification of feedback factors Dynamical gain: Climatic system transfer Temperature Density flux Salinity Density flux AMOC_in AMOC_out + - +

Utrecht, 16/02/2012 TransportSurface Résidu Salinity Temperature TransportSurface Résidu Heat flux feedback strongly damps heat transport feedback Ocean transport Temperature density flux Salinity density flux AMOCin AMOCout + - Local atmospheric damping Quantification of feedback factors

Utrecht, 16/02/2012 Quantifying the AMOC feedbacks among different AOGCMs For a given freshwater input, large spread among AOGCMs (Stouffer et al. 2006) Methodology of feedbacks quantification could be useful (Swingedouw et al. 2007) Application to the models from this project framework? Climatic system transfer Temperature Density flux Salinity Density flux AMOC_in AMOC_out Stouffer et al. 2006

Utrecht, 16/02/2012 THOR water hosing 6 models including one OGCM with 0.1 Sv

Utrecht, 16/02/2012 THOR project: Swingedouw et al., in prep. An hypothesis to explain AMOC spread Rypina et al. 2011

Utrecht, 16/02/2012 Outlooks Quantifying AMOC feedbacks in the different EMBRACE models Evaluating impact of gyre asymmetry on gyre feedbacks factor Limits/challenges Computation of density budget in a model Assumption of AMOC related to density in convection zone holds in other models

Utrecht, 16/02/2012 Predefined sections across the North Atlantic 26N RAPID OVIDE A25 AR7W 42N interface between the subtropical and subpolar gyres overflows : connection between the subpolar gyre and the Nordic Seas connection with the Arctic ocean reference salinity : 34.8

Utrecht, 16/02/2012 FCVAR from Julie Deshayes: Diagnostic package of 3D metrics of the circulation model configurations and simulations GFDL CM3 CNRM CM5 IPSL CM5 CCSM4 + HADGEM2 ? + HADGEM3 ? pre-industrial control runs monthly output + ocean-only simulations ORCA2-OON2 ORCA1-OCEP09 ORCA025.L75-G85 GLORYS2V1 load grid points scale factors identify sections and areas as sequences of grid points extract data (t,z,l) along sections and areas load data u, v, θ, S (t,z,y,x) predefined sections and areas defined by (lat,lon) of end points + additional sections calculate indices (t) for sections, ie components of the northward transport of mass, heat and salt: net (with and without net mass flux) overturning in vertical coordinates overturning in density coordinates barotropic baroclinic (net-overturning-barotropic) 0 to1000m deep 1000 to 2000m deep 2000m deep to bottom related to thermal wind (only from ρ) calculate indices (t) for areas, regarding heat and freshwater: volume changes advective fluxes at ocean boundaries eddy fluxes at ocean boundaries diffusion, ice + atmospheric fluxes Matlab package available to the community

Utrecht, 16/02/2012 Thank you

Utrecht, 16/02/2012 Convection sites density as a driver of AMOC? Strong assumption from the proposed model Gregory and Tailleux (2010): buoyancy fluxes over the convection sites as a production of Available potential energy then used for Kinetic energy production

Utrecht, 16/02/2012 Linear feedback factor and hysteresis Stommel et al. (1961): non linearity for the response of the AMOC to freshwater input This would appears in the feedback factor of the overturning terms for salinity and heat transport (dependent in the mean state)

Utrecht, 16/02/2012 Transport Chaleur Méridien Océanique Advection Méridienne Océanique Gradient Température Méridien Atmosphérique Formation Glace Rejet de Sel Glace Divergence Ekman, locale Transport Eau Douce Méridien Transport, Fonte Glace Flux Densité Température Flux Densité Salinité Flux Densité Salinité THCeTCMOs - Réchauffement climatique + + Action - Action + Réchauffement climatique

Utrecht, 16/02/2012 Avec fonte : convection disparaît Sans fonte : renforcement de la convection en mer de GIN, diminution en mer d’Irminger Réponses des sites de convection Avec : année 500 CTL Sans : année 500

Utrecht, 16/02/2012 Représentation de la THC dans le modèle Fonction de courant latitude-profondeur en Atlantique Latitude Profondeur  2 cellules avec NADW et AABW  Maximum pour la NADW d’environ 11 Sv (Indice THC)  Plus faible que les estimations issues d’observations (14-18 Sv) Sv