Robert W. Christopherson Charlie Thomsen Chapter 11 The Dynamic Planet.

Slides:



Advertisements
Similar presentations
Preview Section 1 Inside the Earth Section 2 Restless Continents
Advertisements

Inside Earth Chapter 1: Plate Tectonics
Plate Tectonics Review
Inside the Earth.
Earth Science The Changing Earth. Geology The scientific study of the origin, history, and structure of the earth. Study of the earth and the processes.
Earth’s Interior By Aimee Chavez.
CONTINENTAL DRIFT, LAYERS OF THE EARTH, PLATE TECTONICS SI.
Integrated Science One
Chapter 7 Plate Tectonics
Chapter 4: Section 1: Inside the Earth
Chapter 8 The Dynamic Planet
Chapter 8 The Dynamic Planet
Seismic Waves Vibrations that travel through the Earth carrying the energy released during an earthquake Pressure The force exerted on a surface divided.
Chapter One Section 1 Plate Tectonics
Earth’s Interior Natural Disasters: Part B. Earth’s Spheres & Systems.
Earth Science: Plate Tectonics
Plate Tectonics ….and Your Community
Crustal Movement.
The Earth’s Structure & Plate Tectonics. The Earth’s Interior Composed of 4 layers –Crust –Mantle –Outer Core –Inner Core.
Chapter 4 Review Plate Tectonics A winning effort begins with preparation. Joe Gibbs Joe Gibbs.
TOPIC 5: PLATE TECTONICS
Dynamic Earth Topics: -Earth’s Interior -Continental Drift -Seafloor spreading -Plate Tectonics -Earthquakes & Epicenters.
Processes that shape the planet.. Earth’s Internal Layers The crust (oxygen, silicon, magnesium and iron) The mantle (silicon & oxygen) Outer core (iron.
Notes 11 – Plate Tectonics Earth Science Mrs. Gordon Saturday, October 10, 2015Saturday, October 10, 2015Saturday, October 10, 2015Saturday, October 10,
 Composition: Silicon, Oxygen, and Aluminum  Types: › Continental Crust: solid & rocky outer layer › Oceanic Crust: thin & dense material.
UNIT 3 EARTH SCIENCE RI_Z2Kgs&safety_mode=true&persist_s afety_mode=1&safe=active.
Earth and Moon Formation and Structure
Earth’s Interior. The Earth’s Core Much of the information scientists have about the Earth’s interior has come not only from complex instruments but also.
Geology Chapter 1 Jeopardy
Chapter 22 ISCI 2001 Structure of the Earth Tectonics.
Robert W. Christopherson Charlie Thomsen Chapter 11 The Dynamic Planet.
Plate Tectonics. What is Plate Tectonics? The Earth’s crust and upper mantle are broken into sections called plates Plates move around on top of the mantle.
1 2 pt 3 pt 4 pt 5pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2pt 3 pt 4pt 5 pt 1pt 2pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4pt 5 pt 1pt Pulling me apart Pulling me apart.
DO NOW FOR THURSDAY, FEB. 28 How do geologists know what the Earth is composed of?
Earth’s Interior Natural Disasters: Part B. Earth’s Spheres & Systems.
Chapter 11 The Dynamic Planet Geosystems 6e An Introduction to Physical Geography Robert W. Christopherson Charles E. Thomsen.
Topic Xii “Earth Dynamic Crust” I. Evidence of Crustal Movement: A. Original Horizontality: assumes that sedimentary rock is deposited in flat layers.
The Structure of the Earth Internal Structure and Heat.
1 Journal Question: If your finger nails grow at about a two inches per year, how long would it take for them to grow to be a mile? (hints: 12 inches in.
Earth’s Interior. Scientists believe the Earth formed 4.6 billion years ago. When it first formed, it was a spinning mass of rocks and dust that was loosely.
1 Plate Tectonics 5 November 2015 Chapter 17 Great Idea: The entire Earth is still changing, due to the slow convection of soft, hot rocks deep within.
Forces that act on the Earth. The Inner Core The deepest layer in Earth is the inner core. It is located at the center of Earth because it contains.
Geology of the Ocean. Origin of Earth 4.6 billion years ago began as giant disk of dust and gases orbiting the sun grains came together forming comets,
Earth’s Interior 6th Grade Earth Science Ms. Mudd.
Science 8 th Grade Geology Part 3 Rocks Standard A.
Formation of Earth Birth of the Solar System Nebular Theory
Continental Drift and Plate Tectonics. Crust: - the outermost layer - rigid and very thin km thick - brittle and breakable. Mantle: dense, hot.
List 1 fact about Earth. Agenda for Monday Nov 22 nd 1.Finish Movie 2.Layers of the Earth notes.
Chapter 22.1: Earth’s Structure
Earth’s Structure. The layers of Earth Earth is divided into 3 layers based on chemical composition. 1)Core: Dense metallic center, made up of mainly.
2 The Earth’s Structure series of layers or spheres which differ in density, chemistry (or composition) and physical properties.
Alfred Wagner – proposed that in the distant past, the Earth ’ s continents were all joined as a single landmass. What was the name of his hypothesis?
Earth’s Interior Earth’s surface has been lifted up, pushed down, bent, and broken therefore it looks much different today than it did millions of years.
Planet EarthSection 1 SECTION 1: EARTH’S INTERIOR AND PLATE TECTONICS Topics of section: KEY IDEAS 〉 How is Earth’s interior structured? 〉 How has the.
Deep Time  The theory that Earth has a long history of development & change lasting billions of years Deep time began with the Precambrian Era.
Earth’s Interior.
Earth’s Interior “Seeing into the Earth”
Earth’s Dynamic Crust and Interior
Earth Formation, Earth Layers, & Plate Tectonics
Inside the Earth r = 3,959 mi.
CONTINENTAL DRIFT & PANGEA
Handout 3 Standard 2-2 Plate Tectonics.
Plate Tectonics Earth’s Interior Convection Currents
Moho line, Lithosphere, Aesthenosphere,
Chapter 1: Introducing Earth Lesson 1: Review of Earth’s System
Plate Tectonics Test.
Earth’s Interior.
Basics of Plate Tectonics
Section 1 – Inside the Earth
Inside Earth: Chapter 1 Plate Tectonics.
Presentation transcript:

Robert W. Christopherson Charlie Thomsen Chapter 11 The Dynamic Planet

The seemingly static landscape and mountains are constantly being shaped and reshaped by endogenic and exogenic forces, although slowly. Given enough time, any slow process can make a difference.

The Pace of Change Earth’s Structure and Internal Energy The Geologic Cycle Plate Tectonics The Dynamic Planet

Geologic time scale Popular time: 1500 BC, 2009AD Years Before Present (BP): Uniformitarianism: An assumption that the same physical processes active in the environment today have been operating throughout geologic time. The Pace of Change

Geologic Time Scale Figure 11.1 Earth age: 4.6 billion years condensed and congealed from a nebula of dust, gas and icy comets. Scales of Geologic Time Eons: Eras: Periods: Epochs: Zoic: life Protero-: former, anterior Phanero-: visible to the naked eye  flowering plants Paleo-: old Meso-: middle Ceno-: recent

Atom: nucleus: protons (+) & neutrons electrons (-) For some matter, its protons and neutrons do not stay together indefinitely. The particles can break away and the nucleus can disintegrate and form new matter, in the mean time release radioactive energy. The decay rate is measured by half time, the time needed for the matter to decay half of its mass into new matter. Measuring the ratio of original matter and its decayed matter, one can estimate the age of the object. The oldest rock dated: 4.3 b.y.a, indicating continental crust was forming this many years ago. Earth’ Time Clock: Radioactivity

Earth’s Core : Inner Core Outer Core Earth’s Mantle: Lower Mantle Upper Mantle Asthenosphere Uppermost Mantle Crust: Continental and Oceanic Crust. Earth’s Structure and Internal Energy

Earth in Cross Section Figure 11.2

Earth’s Interior Figure 11.2

Earth’s Interior Figure 11.2 Inner core remains solid iron because of tremendous pressure though temp well above melting point, Outer core generate 90% of Earth magnetic field to form magnetosphere, which protects Earth from the solar wind and cosmic radiation. Mantle includes lower and upper (upper mantle, asthenosphere and uppermost mantle) mantle, representing 80% of Earth volume. Temp increase with depth. Rich in oxides of iron, magnesium and silicates. Note the density gradient As Earth solidified, gravity sorted materials by density. Heavier substances (e.g. iron) gravitated toward the center; lighter elements (e.g. silica) welled upward to the surface.

Figure 11.2 Earth’s Interior Lithosphere: Crust + uppermost mantle. Asthenosphere: plastic layer (least rigid in mantle), contains hot spots causing vertical convection, creates tectonic activity Continental crust: primarily granite high in silica, aluminum, potassium, calcium and sodium Oceanic crust: primarily basalt high in silica, magnesium and iron

Core to Crust Figure 11.3

Scientists cannot dig that deep. The deepest hole scientists ever dug is 12.23km (20 years of effort!) Scientists infer the deep Earth structure indirectly through seismic tomography. The rate of transmittance of seismic waves depends on the density of the structural material. Rigid matter transmits the seismic waves faster. Plastic zones simply do not transmit certain seismic waves. Some seismic waves are reflected when density changes, whereas others are refracted (or bent) as they travel through Earth. How Scientists Know the Deep Structure?

 At least 90% of Earth’s Magnetism is generated by fluid outer core.  Magnetic North is at 83 o N, 114 o W in Magnetic north pole migrates. It moved 1100 km in the past century.  Magnetic reversal: Magnetic polarity sometimes fades to zero and returns to full strength with magnetic poles reversed. It happened 9 times in the past 4 million years. The transition period between reversal is relatively short (1,000 ~10,000 years)  Current records indicates that magnetic fields decay over the last 150 years. We may be within 1000 years of magnetic reversal. Earth’s Magnetism

Isostatic Adjustment Figure 11.4 Continental crust is lightest, “floating” on denser layers. When there is heavier loads, such as mountains, glaciers,, the crust “sink” deeper (like a boat loaded with cargo). Unloading these cargos will results in isostatic rebound as shown here. GPS can be used to study the rate of isostatic rebound. A group of scientists from UAF found that southern Alaska is rebounding much faster than they thought because of melting of glaciers

Rock Cycle Minerals and Rocks Igneous Processes Sedimentary Processes Metamorphic Processes The Geologic Cycle

Figure 11.5 The cycle of matter within the Earth system caused by exogenic and endogenic forces. Hydrologic Cycle Rock Cycle Tectonic Cycle

The Geologic Cycle Figure 11.5

Eight natural elements make up 99% of Earth’s crust! Oxygen and Silicon make up 74.3%. There are more Oxygen in the crust (47%) than in the atmosphere (21%) !

The Rock Cycle Figure 11.6

A Brief History Sea-Floor Spreading and Production of New Crust Subduction of the Crust The Formation and Breakup of Pangaea Plate Boundaries Earthquake and Volcanic Activity Hot Spots Plate Tectonics

First person to notice the apparent fit of some continental coastlines was a Geographer (Abraham Ortelius) in 1500s. The “continental drift” concept was formally introduced by a German geophysicist, Alfred Wegener in The Earth had a single giant continent, Pangean 225 MBP, then drifted apart as we have today. Wegener’s continental drift concept was confirmed in the 1960s. A Brief History of Plate Tectonics

Crustal Movements: Sea Floor Spreading Figure A remarkable feature of the sea floor: An interconnected worldwide mountain chain, forming a ridge ~64,000 km in length and ~1,000 km in width.

Magnetic Reversals Figure Evidence of sea floor spreading: 1. The magnetic particles orient themselves in line with the magnetic fields when the lava appeared and its orientation is frozen in the rocks. 2. Radioactive dating: the farther away from the ridge, the older the age of the rocks.

Relative Age of the Oceanic Crust Figure The oldest sea floor rock is 208 MBP (quite young compared to 4.6 Billion years of Earth).

Continents Adrift Figure major plates: Three kinds of plate boundaries:

Earth’s Major Plates Figure Arrows represent 20 million years of movement.

Earthquakes and Volcanoes Figure Plate boundaries are the primary location of earthquake and volcanic activity : upwelling material arrive at the surface

Hot Spot Tracks Figure Another hot spot: Yellow Stone National Park: a mega-magma chamber beneath which explodes 620,000 years. It can explode in the next 20,000 years. It is so big its ashes can cover half the country.

Robert W. Christopherson Charlie Thomsen Geosystems 7e An Introduction to Physical Geography End of Chapter 11