5/3/2015 Cell is the base of life. 5/3/2015 The Endomembrane system A membranous system of interconnected tubules and cisternae Membranes of the endomembrane.

Slides:



Advertisements
Similar presentations
Parts of the Cell.
Advertisements

Lysosomes: Digestive Compartments
The Cell: Mitochondria & Chloroplasts. Overview Mitochondria & chloroplasts are the organelles that convert energy to forms that cells can use for work.
Mitochondria are in both cells!! animal cells plant cells mitochondria chloroplast.
A TOUR OF THE CELL.
CELL STRUCTURES AND FUNCTIONS
What is the primary functions of the nucleus?
STRUCTURES AND FUNCTIONS OF EUKARYOTIC CELLS
CELLS Structures and Functions. Basic Parts of All Cells 1.Plasma membrane – barrier between in and outside of cell 2.Cytoplasm – region inside plasma.
Tour of the Cell 2 (Ch. 6). Cells gotta work to live! What jobs do cells have to do? –make proteins proteins control every cell function –utilize and.
B- Eukaryotic Cell.
Conrad McLaren, Iqra Dhorajiwala, Naji Balonkita, Alex Bahadri
Chp. 4 Cell Structure and Function
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings CHAPTER 6 THE STRUCTURE AND FUNCTION OF THE CELL All living things are composed.
By Mariah Ghant, Saori Ishizuka, and Monica Lin.   The set of membranes found in eukaryotic cells that carry out a variety of tasks in the cell  Tasks.
Endomembrane System & Energy Production The endomembrane system is an internal membrane system within the cell that carries out a variety of functions.
CHAPTER 3 A TOUR OF THE CELL The Endomembrane System
Cell Organelles By Diana L. Duckworth Rustburg High School Campbell County.
Eukaryotic Cell Structures
  The nucleus contains most of the genes in a eukaryotic cell. Some genes are located in mitochondria and chloroplasts.   The nucleus is separated.
General Biology A Tour of the Cell. I. What is a Cell? A. The cell theory 1. The fundamental units of both structure and function in all living things.
M. Saadatian A TOUR OF THE CELL 1.
 Nucleus: contains most of the genes that control entire cell 1. Nuclear envelope: double membrane, encloses nucleus, regulates molecular traffic by.
Chapter 6 – Cells I – 2 Major types of Cells A. Prokaryotic Cells – Belong to domains Bacteria and Archaea. 1. No true nucleus; lacks a nuclear envelope.
Lysosomes A sac of hydrolytic enzymes – made in the rough ER & modified in the golgi – Acidic in nature – Special inner membrane that resists auto (self)
CELLS The Fundamental Units of Life. Cell Theory 1.All organisms are composed of 1 or more cells. 2.The cell is the basic living unit, providing organization.
Prokaryotic Cells Eukaryotic Cells domains Bacteria & Archaea 1-10 μm
Cells.
amyloplast - an organelle in some plant cells that stores starch. Amyloplasts are found in starchy plants like tubers and fruits. ATP - ATP is short for.
CYTOLOGY. Cytology Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells. A.two major cell types B.distinguished by structural.
CHAPTER 7 A TOUR OF THE CELL Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section D: The Endomembrane System 1.The endoplasmic.
Protein Synthesis Summary. Protein Synthesis 1. The DNA double helix unwinds to expose a sequence of nitrogenous bases. (A,T,C,G) 2. A copy of one of.
Lecture for Chapter 4 DNA organization Endomembrane System.
CHAPTER 3 A TOUR OF THE CELL Other Membranous Organelles 1.Mitochondria and chloroplasts are the main energy transformers of cells 2.Peroxisomes generate.
Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 7.7.
TEM - interiorSEM - surface Animal Cell Plant Cell.
A Tour of the Cell Lecture 2, Part 1. Cell Theory Cells are the basic unit of structure and function The lowest level of structure that can perform all.
Cell StructureSection 2 Key Ideas What does the cytoskeleton do? How does DNA direct activity in the cytoplasm? What organelles are involved in protein.
A Tour of the Cell Chapter 6. Overview: The Importance of Cells  Cell Theory: All organisms are made of cells  The cell is the simplest collection of.
Introduction to Cells Animal Cells, Plant Cells, Bacterial Cells, Oh My!
LG 1- Cell Structure and Function Things Common to All Cells Genetic Material – Cytoplasm – Plasma Membrane – Cell Types Prokaryotes – Eukaryotes – The.
A Tour of the Cell AP Biology Fall Cells are necessarily small Most cells are between 1 and 100 micrometers They have to be that small to allow.
CHAPTER 7 A TOUR OF THE CELL Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section E: Other Membranous Organelles 1.Mitochondria.
Chapter 4 Organization of the Cell. Recall: Cell Theory: All living things are made up of one or more cells Cells are the basic unit of organization and.
A Tour of the Cell. Overview: The Cell Cell: the basic unit of all living organisms Cell: the basic unit of all living organisms 2 types: 2 types: Prokaryotic.
AP Exam Review Cells. Prokaryotic vs. Eukaryotic Cells Prokaryote Prokaryote “before” “nucleus” “before” “nucleus” Bacteria Bacteria DNA is concentrated.
Ch.7 A Tour of the Cell. Nucleus Genetic material... chromatin chromosomesnucleolus: rRNA; ribosome synthesis Double membrane envelope with pores Protein.
Chapter 5.3 & 5.5 The Cell’s Energy System(s): Mitochondria & Chloroplasts.
Chapter 6 Introduction to Cells. COMMON CELL TRAITS A cell is the smallest unit that is capable of performing life functions. All organisms are made of.
Many transport vesicles from the ER travel to the Golgi apparatus for modification of their contents. The Golgi is a center of manufacturing, warehousing,
CELL STRUCTURE AND CELL ORGANISATION. UNDERSTANDING CELL STRUCTURE AND FUNCTION LEARNING OUTCOMES A student is able to: –Identify the cellular components.
Chapter 4 A View of the Cell. Cell History The microscope was invented in the 17th century Using a microscope, Robert Hooke discovered cells in 1665 All.
B- Eukaryotic Cell.
A TOUR OF THE CELL OVERVIEW
CHAPTER 7 A TOUR OF THE CELL Section E: Other Membranous Organelles
Structures and Functions
B- Eukaryotic Cell.
General Animal Biology
Eukaryotic Cells Eukaryotic cells are characterized by having
A Tour of the Cell Unit 2 Chapter 6.
CHAPTER 7 A TOUR OF THE CELL Other Membranous Organelles
2. Ribosomes: build the cell’s proteins
Components of the endomembrane system:
Mitochondrion (plural = mitochondria)
Structures and Functions
Cell Introduction Prokaryotic Cell: A cell that is lacking a nucleus and most organelles Eukaryotic Cell: A cell that contains a membrane bound nucleus.
B- Eukaryotic Cell.
AP BIOLOGY Chapter 6 Cell Structure & Function
B- Eukaryotic Cell.
Presentation transcript:

5/3/2015 Cell is the base of life

5/3/2015 The Endomembrane system A membranous system of interconnected tubules and cisternae Membranes of the endomembrane system vary in structure, composition, thickness and behavior The endomembrane system includes: Nuclear envelope Endoplasmatic reticulum Golgi apparatus Lysosomes Vacuoles Plasma membrane (related to endomembrane)

5/3/2015 ER manufactures membranes Endoplasmatic reticulum (ER) – network within the cytoplasm – extensive membranous network of tubules and sacs (cisternae) which sequesters its internal lumen (cisternal space) from the cytosol. Consist of smooth and rough ER.

5/3/2015 Smooth ER Participates in the synthesis of lipids, phospholipids and steroids Participates in carbohydrate metabolism Detoxifies drugs and poisons Stores calcium ion necessary for muscle contraction

5/3/2015 Rough ER Manufactures secretory proteins and membranes Proteins to be secreted are synthesized by ribosomes attached to rough ER Polypeptide chain is threaded through ER membrane into the lumen or cisternal space Protein folds into its native conformation Undergo modification: oligosaccharide are added to the proteins in order to make glycoprotein Proteins departs in a transport vesicle pinched off from transitional ER adjacent to the rough ER site production

5/3/2015 Rough ER Glycoproteins – protein covalently bonded to carbohydrate Oligosaccharide – small polymer of sugar units Transport vesicle – membrane vesicle in transit from one part of the cell to another

5/3/2015 Rough ER and membrane production Membrane proteins are produced by ribosomes. Growing polypeptide anchors by hydrophobic regions into the ER membrane Enzymes within the ER membrane synthesize phospholipids from raw materials in the cytosol Newly expanded ER membrane can be transported as a vesicle to other parts of the cell

5/3/2015 Apparatus Golgi Golgi apparatus – organelle made of stacked, flattened membranous sacs (cisternae), that modifies, stores and routes products of the ER Has a distinct polarity. Membranes of cisternae at opposite ends differ in thickness and composition.

5/3/2015 Apparatus Golgi Two poles are called the cis face (forming face) and the trans face (maturing face) Cis face, which is closely associated with transitional ER, receives products by accepting transport vesicles from the ER. Trans face pinches off vesicles from the Golgi and transports molecules to other sites

5/3/2015 Apparatus Golgi Golgi products in transit from one cisternae to the next, are carried in transport vesicles. The Golgi: alters some membrane phospholipids modifies the oligosaccharide portion of glycoproteins target products for various parts of the cell sorts products for secretion

5/3/2015 Apparatus Golgi Many polysaccharides including hyaluronic acid are Golgi products

5/3/2015 Lysosomes Lysosomes are relatively large vesicles formed by the Golgi: - organelles which are membrane-enclosed bag of hydrolytic enzymes that digest all major classes of macromolecules. Enzymes include lipases, carbohydrases, proteases, and nucleases

5/3/2015 Lysosomes Lysosomal membrane performs two important functions: Sequesters potentially destructive hydrolytic enzymes from the cytosol Maintains the optimal acidic environment for enzyme activity by pumping H + s inward from the cytosol to the lumen

5/3/2015 Function of the lysosomes a.Intracellular digestion Phagocytosis – cellular process of ingestion, in which the plasma membrane engulfs substances and pinches off to form a particle-containing vacuole Lysosomes may fuse with food-filled vacuoles, and their hydrolytic enzymes digest the food: Amoeba and other protists Human macrophages

5/3/2015 Function of the lysosomes b.Recycle cell’s own organic material Lysosomes may engulf other cellular organelles or part of the cytosol and digest them (autophagy) Resulting monomers are released into the cytosol where they can be recycled into new macromolecules c. Programmed cell destruction This process is important during metamorphosis and development

5/3/2015 The formation and functions of lysosomes The cell encloses food in a vacuole. The food vacuole fuses with a lysosome, and hydrolytic enzymes digest the food.

5/3/2015 The formation and functions of lysosomes After hydrolysis, simple sugars, amino acids, and other monomers pass across the lysosomal membrane into the cytosol as nutrients for the cell. Lysosomes recycle the molecular ingredients of organelles (autophagy). The cell continually renews itself

5/3/2015 Lysosomes and human disease Symptoms of inherited storage diseases result from impaired lysosomal function. Lack of a specific lysosomal enzymes causes substrate accumulation which interferes with lysosomal metabolism and other cellular functions Pompe’s disease – the missing enzyme is a carbohydrase that breaks down glycogen – glycogen accumulation damages the liver Tay-Sachs disease – brain impairment by accumulation of lipids

5/3/2015 The formation and functions of lysosomes Transformation of a tadpole into a frog and Disappearance of tissue between the hands fingers of human embryos are done by digestion with lysosomes

5/3/2015 Diverse function of vacuoles Food vacuoles – vacuole formed by phagocytosis Contractile vacuoles – pump water excess out of the cell (in protozoa) Central vacuole enclosed by a membrane (tonoplast) exist in mature plants.

5/3/2015 Diverse function of vacuoles Central vacuole -is the major food storage (protein storage in seeds); -stores inorganic ions (K+ and Cl-); -sequesters dangerous metabolic by-products from the cytoplasm -contains soluble pigments in some cells;

5/3/2015 Diverse function of vacuoles Central vacuole -helps against predators by containing poisonous compounds; - plays a role in plant growth by absorbing water and elongating the cell;

5/3/2015 Relationships between endomembranes Membrane and secretory proteins produced by the ER flows in the form of transport vesicles to the Golgi. Golgi pinches off vesicles: Vesicles give rise to lysosomes and vacuoles and fuse with and add to plasma membrane. The membrane expends and releases secretory proteins

5/3/2015 Other membranous organelles Mitochondria and chloroplasts – the main energy transformers of cells Mitochondria and chloroplasts are organelles that transduce energy acquired from the surroundings into forms useable for cellular work

5/3/2015 Other membranous organelles Mitochondria are the sites of cellular respiration: catabolic process that generates ATP by extracting energy from sugars, fats and other molecules Chloroplasts the sites of photosynthesis: they convert solar energy to chemical energy by absorbing sunlight and using it to drive the synthesis of organic compounds from CO 2 and H 2 O

5/3/2015 Mitochondria Enclosed by double membranes that are not part of endomembrane system (the membrane proteins are synthesized by free ribosomes) Contain ribosomes and some DNA that programs a small portion of their own protein synthesis Are semiautonomous organelles that grow and reproduce within the cell

5/3/2015 Mitochondria outer membrane inner membrane Cristae Matrix

5/3/2015 Mitochondria Found in nearly all eukaryotes cells Number of mitochondria depends on the cell’s metabolic activity Are about 1 μm in diameter and 1-10 μm in length Are dynamic structures that move, change their shape and divide MitochondriaMitochondria contain their own DNA (termed mDNA) and are thought to represent bacteria-like organisms incorporated into eukaryotic cells over 700 million years ago (perhaps even as far back as 1.5 billion years ago).

5/3/2015 Mitochondria They function as the sites of energy release (following glycolysis in the cytoplasm) and ATP formation (by chemiosmosis). chemiosmosis Smooth outer membrane is highly permeable to small solutes, but it blocks passage of proteins and other macromolecules Convoluted inner membrane contains embedded enzymes that are involved in cellular respiration. It folds into a series of cristae, which are the surfaces on which ATP is generated.cristae

5/3/2015 Mitochondria Intermembrane space – a narrow region between the inner and outer mitochondrial membranes Reflects the solute composition of the cytoplasm, because the outer membrane is permeable Mitochondrial matrix – compartment enclosed by the inner membrane, contains enzymes that catalyze many metabolic steps of cellular respiration. Some enzymes of respiration and ATP production are actually embedded in the inner membrane.

5/3/2015 Muscle Cell Mitochondria

5/3/2015 Plastids Plastids are also membrane-bound organelles that only occur in plants and photosynthetic eukaryotes. They include amyloplasts, chromoplasts and chloroplasts. Amyloplasts – colorless plastids that store starch in roots and tubers Chromoplasts – plastids containing pigments other than chlorophyll; responsible for fruits and flowers color. Chloroplasts – chlorophyll-containing plastids which are the sites of photosynthesis in eukaryotes.

5/3/2015 Plastids Chloroplasts are found in eukaryotic algae, leaves and other green plant organs Are lens-shaped and measure about 2-5  m Are dynamic structures that change shape, move and divide. Functional compartments: Intermembrane space – separates the two membranes Inside the chloroplast is another membranous system – thylakoids – segregates the interior of the chloroplast into two compartments: thylakoid space and stroma.

5/3/2015 Plastids Thylakoids function in the steps of photosynthesis that initially convert light energy to chemical energy Collectively a stack of thylakoids are a granum [plural = grana]) floating in a fluid termed the stroma. grana]stroma Photosynthetic reactions that use chemical energy to convert carbon dioxide to sugar occur in the stroma

5/3/2015 Chloroplasts

5/3/2015 Chloroplasts Like mitochondria, chloroplasts have their own DNA, termed cpDNA. Chloroplasts of Green Algae (Protista) and Plants (descendants of some Green Algae) are thought to have originated by endosymbiosis of a prokaryotic alga similar to living Prochloron (Prochlorobacteria).Green Algae Chloroplasts of Red Algae (Protista) are very similar biochemically to cyanobacteria (also known as blue-green bacteria.Red Algaecyanobacteria

5/3/2015 Peroxisomes Peroxisomes are roughly spherical and often have a granular or crystalline core that is probably a dense collection of enzymes. This peroxisome is in a leaf cell. Notice its proximity to two chloroplasts and a mitochondrion. These organelles cooperate with peroxisomes in certain metabolic functions (TEM).

5/3/2015 Peroxisomes Peroxisomes do not bud from the endomembrane system. They grow by incorporating proteins and lipids made in the cytosol. They increase in number by splitting in two when they reach a certain size. Peroxisomes in liver detoxify alcohol by transferring H to O and producing H2O2 Peroxidase destroys toxic H2O2 by converting it to H2O

5/3/2015 Peroxisomes Peroxisomes convert fatty acids to smaller molecules that can be used by mitochondria in the process of cellular respiration. In plant seeds glyoxysomes, special peroxisomes, convert fatty acids to sugar. This provides growing seedlings with energy and carbon source.

5/3/2015 Cytoplasm The cytoplasm was defined earlier as the material between the plasma membrane (cell membrane) and the nuclear envelope. Fibrous proteins that occur in the cytoplasm, referred to as the cytoskeleton maintain the shape of the cell.cytoskeleton

5/3/2015 Cytoplasm MicrotubulesMicrotubules function in cell division and serve as a "temporary scaffolding" for other organelles. ActinActin filaments are thin threads that function in cell division and cell motility. Intermediate filaments are between the size of the microtubules and the actin filaments.

5/3/2015 Reading Ch. 6 pp