Cargo Pod Design Kyle Bergen Ejvin Berry Cody Candler Mike Gavanda.

Slides:



Advertisements
Similar presentations
Lecture X: Wind Factors
Advertisements

Formula 1 Group Members: Quinn Collett Steve Godlewski Tobiah Halter Jeff Swanson Academic Advisor: Dr. Chien Wern June 4, 2003.
Wing Trade Study. Wing Process Flowchart CFD (In)Validation.
Lecture 3: Take-off Performance
Control on the ground ATC Chapter 2 & 3.
Weight and Balance.
Chapter 9 Spur Gear Design
External Flows.
M.E. 462 Capstone Design I.U.P.U.I. Spring 2007 Bishop Steering: 1970 Lotus Europa Front Axle Re-design Aaron Emmons Phil Palmer Brad Holtsclaw Adam Spindler.
Chase Beatty (Team Leader) Brian Martinez (Organizer) Mohammed Ramadan (Financial Officer) Noe Caro (Historian) SAE AERO Chase Beatty.
MICE Collaboration Meeting at Frascati, Jun 26~29, 2005 Iron Shield Mounting Design Stephanie Yang.
Review Chapter 12. Fundamental Flight Maneuvers Straight and Level Turns Climbs Descents.
Basic Hydraulics Irrigation.
The Four Forces of Flight
Aircraft Introduction. PA46 Initial Training PA46 Aircraft General.
Minimum Weight Wing Design for a Utility Type Aircraft MIDDLE EAST TECHNICAL UNIVERSITY AE 462 – Aerospace Structures Design DESIGN TEAM : Osman Erdem.
In the analysis of a tilting pad thrust bearing, the following dimensions were measured: h1 = 10 mm, h2 = 5mm, L = 10 cm, B = 24 cm The shaft rotates.
Senior Design Project Cirrus Design AEM 4331 Jon Anderson Mike Asp Kyle Bergen Ejvin Berry Cody Candler Jim Forsberg Mike Gavanda Alex Messer Dan Poniatowski.
Modern Equipment General Aviation (MEGA) Aircraft Progress Report Flavio Poehlmann-Martins & Probal Mitra January 11, 2002 MAE 439 Prof. R. Stengel Prof.
Official flags for government agencies are required to have specific hoist (width), fly (length) measurements. They all have a fly:hoist ratio of 1.9:1.
Launch Vehicle  Launch Vehicle Summary  The length of the rocked is inches, and the mass is ounces.  We have a dual Deployment Recovery.
Warm-Up – 5/7 – 10 minutes Utilizing your notes and past knowledge answer the following questions: Describe the effect of a tailwind and headwind on an.
Lecture 7: DESCENT PERFORMANCE
READ GLEIM CHAPTER 5 ( ) 17 QUESTIONS
POE FINAL EXAM REVIEW Spool-White Fall 2013.
Lesson 14: Weight And Balance. Importance Of Weight And Balance Forward CG Increases tail down force which increases effective weight (real weight + tail.
LECTURE 4 BALANCE, STABILITY AND CENTRE OF GRAVITY
Warm-Up – 8/25 – 10 minutes Utilizing your notes and past knowledge answer the following questions: What are the four forces of flight? Describes what.
Lecture 5: Climb PERFORMANCE
Senior Design Project Cirrus Design AEM 4331 Jon Anderson Mike Asp Kyle Bergen Ejvin Berry Cody Candler Jim Forsberg Mike Gavanda Alex Messer Dan Poniatowski.
Recent and Future Research for Bird-like Flapping MAVs of NPU Prof. B.F.Song Aeronautics School of Northwestern Polytechnical University.
1. Objects at rest will stay at rest, and objects in motion will stay in motion in a straight line, unless acted upon by an unbalanced force.
LECTURE 6 OTHER POTENTIAL THREATS AVIATION SAFETY AND SECURITY.
Parts of A Vehicle In this presentation you will learn the standard names of the different parts that make up a wheeled vehicle.
Wing Trade Study. Wing Process Flowchart CFD (In)Validation.
Flight Operations Panel Madrid May 2002 Rob Root Flight Operations Engineering B AVIATION OPERATIONAL MEASURES FOR FUEL AND EMISSIONS REDUCTION WORKSHOP.
Flat Saw Training. Flat Saw Sizes –Low Horsepower Blade diameters range from 8” (200mm) to 18” (450mm) Power ranges from 4 to 25 horsepower.
Lecture 2: Composition of Aircraft Weight
DESIGN OF THE 1903 WRIGHT FLYER REPLICA MADRAS INSTITUE OF TECHNOLOGY CHENNAI - 44.
1. Mission Statement Design Requirements Aircraft Concept Selection Advanced Technologies / Concepts Engine / Propulsion Modeling Constraint Analysis.
AVAT11001: Course Outline 1.Aircraft and Terminology 2.Radio Communications 3.Structure, Propulsion, Fuel Systems 4.Electrical, Hydraulic Systems and Instruments.
Weight and Balance.
Theory of Flight All are demonstrated by the flight of the bird!
The Private Pilot.
P – , TOW TANK FOR TETHERED HYDROFOIL TEAM MEMBERS: Hope Alm (ME)Tim Buckner (ME) William Lentlie (ME) Andres Santizo Matheu (ISE) Shauna.
Lecture 6: CRUISE PERFORMANCE
Performance Charts.
4 Forces of Flight & Stability
Federal Aviation Administration 0 Composite Wing Tank Flammability May 20, Composite and Aluminum Wing Tank Flammability Comparison Testing Steve.
VNY FSDO FAASTeam Representative
Advanced Weight & Balance
Utilizing your notes and past knowledge answer the following questions: 1) The intensity or strength of the vortices is directly proportional to the ________.
Flight Manual - Sections 5 & 6 Performance Charts and Weight & Balance
Blocking a b c d.
Zuliana-July Lecture 1: INTRODUCTION AIRCRAFT MASS (WEIGHT) & PERFORMANCE By: Zuliana Ismail, 2010.
Senior Design Project Cirrus Design AEM 4331 Jon Anderson Mike Asp Kyle Bergen Ejvin Berry Cody Candler Jim Forsberg Mike Gavanda Alex Messer Dan Poniatowski.
Kazan Helicopters PJSC
Jacking The aviation technician must be familiar with the jacking of aircraft in order to perform maintenance and inspection. Jacking procedure is vary.
Optimum Pump Performance for Process Applications
Ground School 3.06 Weight & Balance.
Conceptual Design Report
Auto Tow Conversion Course
Forces on an Aircraft Four forces on an aircraft in flight:
Airfoil Any surface that provides aerodynamic force through interaction with moving air Aerodynamic force (lift) Moving air Airfoil.
Warm-Up – 9/5 – 10 minutes Utilizing your notes and past knowledge answer the following questions: What are the four forces of flight? Describes what.
FROST/SNOW/ICE FAR Operating in icing conditions.
FLIGHT.
West Point Aviation Club Private Pilot Ground Instruction
Overfill Prevention Technology and Maintenance
Weight and Balance Private Pilot Ground School
Presentation transcript:

Cargo Pod Design Kyle Bergen Ejvin Berry Cody Candler Mike Gavanda

Individual Report Ejvin Berry 68 hours Tasks – Initial Aerodynamics Optimization – Quick Prototype Modeling – Final Concept Modeling

Cirrus SR22 Cargo Pod

Cargo Pod Guidelines With 2 passengers (including pilot), 4 hours of fuel, carry one of the following: 2 sets of skis with equipment – Required volume of 12in x 6in x 79 in 2 sets of golf clubs (with drivers) – Required volume of 35in x 11in x 50in Minimum 8” offset from firewall

Pod on Fuselage

Clearance/ Tail Strike Envelope

Bottom View

Attachment View

Front Fairing (2) Rear Fairing

Conclusions Demonstrates – Practicality Meets required tasks, loads – Ease of Operation Location specific – Aesthetic Quality – Aerodynamics

Recommendations Study feasibility of manufacturing contoured pod surfaces to mesh with fuselage. – Increased capacity – Fit CG envelope better – Aerodynamics Improved

Attachment Methods Individual Report by Kyle Bergen 80 hours worked

Attachment to Longerons Three points of attachment for stability and ease of attachment Use longerons as hard points to anchor mounting brackets which extend to belly. One piece assembly screwed to belly attachment. Bolts secure attachment pieces together from embedded pieces in pod fiberglass

Front Mounting Brackets (Two)

Rear Mounting Bracket (one)

Under belly attachment from bracket to Pod (three)

Embedded in Top of Pod Slides into underbelly attachment

Belly Plugs when Pod is not attached

General Analysis Cosmos Express in Solid Works was used to diagnose the stresses on parts Maximum forces were used with total weight of Pod with load (120 lbs), with 4 G’s applied and safety factor of 1.5. Total force of 720 lbs. C.G. of front loaded pod (two golf bags) calculated

General Analysis Cont. 216 lbs on each front attachment and 288 lbs on rear attachment. All bolts to the longerons and to the pod/belly attachments are ¼ in. Screws to the belly bracket attachments are in.

Allowable Loads Allowable Load=(Allowable Stress/Safety Factor)(Area) For Bolts and Screws of 304 Stainless Steel, Tensile Strength Yield is used as psi, a shear strength of half the yield is used, psi, though online sources show it much higher, I will use a low number. Bolts through under belly attachments are in double shear so we see an allowable load of 2297 lbs. Screws in Tension see the yield strength of psi, we see allowable load of 2297 lbs as well. (since in double shear we use twice the area and Yield strength is twice the shear strength we see the same result.) These allowable loads are well above what the pod would see.

Stresses in bolts to longerons Since there are two bolts into the longerons on each front attachment we take the Total force on each bolt to be 216/2 on the front for a force of 108 lbs. For the rear bracket each bolt sees 72 lbs. These bolts have a smaller area so we see an allowable load of lbs in shear for each bolt. These requirements are met by the 304 Stainless Steel bolts of ¼ inch diameter.

Deformation Picture of front attachment Multiplied many times for show Safety factor of 2.47

Statistics Piece was run with both 304 S.S. and Alloy is chosen because of lower weight and higher yield Weight of Piece is.22 lbs Max Stress in Piece psi Max Displacement is.005 inches at base.

Deformation Picture of Rear Attachment Lowest Factor of Safety in design is 4.82

Statistics Piece was run with both 304 S.S. and Alloy is chosen because of low weight (3 times less) and higher yield Weight of piece is 1.4 lbs Max Stress in piece is psi Max Displacement is.005 inches

Deformation in Under belly attachment to pod piece Safety Factor of 1.95

Statistics Piece was run with both 304 S.S. and Alloy is demonstrated here Data taken was for 288 lbs, so pieces are not exclusive to one attach point, three identical pieces. Weight of piece is.31 lbs Max Stress in piece is 1798 psi Max Displacement in piece is inches

Displacement of Embedded Pod Piece Safety Factor 25.48

Statistics The piece was run testing both 304 Stainless and Alloy is recommended because of its slightly higher yield strength and much less weight Weight of piece is.32 lbs Max Stress in piece is 1804 psi Max displacement is inches.

Final Statistics Total weight of the attachment method is 3.73 lbs 304 SS would have worked for all pieces as well, and even reduced some of the displacement, however, the weight would have been significantly increase. 304 SS is used for bolts since that is a primary use of 304 SS. Alloy 2018 is chosen because it is a high strength alloy. It is very easily machined and is a tough alloy that can be used for heavy duty structural parts.

Conclusions The attachment methods as designed work for the support of the cargo pod. Front attachments are placed on the inside of the longerons at 19 inches behind firewall and rear attachment is placed between longerons at 69 inches behind firewall. Inspection of longerons looked to be good placement. Would have liked to do further analysis on the Longerons and get more accurate dimensions. Wish we would have nailed down a design sooner since a lot of the semester was spent on investigation of workable/do-able pod designs. Further work would include optimization of current design pieces and trying different designs. I would like to thank my team and Steve Hampton for all the support throughout the project!

Individual Report Mike Gavanda 70 hours Worked on – Ground clearance – Tail strike clearance – Pod access

Solid works attached Pod model 11:41 AM

Clearance 11:41 AM

Solid Works model 11:41 AM

Clearance/ Tail Strike Envelope

Pod wheel Clearance 11:41 AM

Golf Bag Width10 in Height Bag34 in Height with clubs50 in Average Golf Bag Size 11:41 AM

Golf Bag Clearance 11:41 AM

Skis Length (cm) Side cut tip(mm) Waist (mm)9699 Tail (mm) Weight (g for one ski) :41 AM

Skis and pod

Access

Access Seal * ** Camloc 4002 Studs* 2600 and 2700 series made of steel Shear: 1050 lbs. (ultimate) Tensile strength: 700 lbs. (rated) Rated to 450° F Example of watertight hatch seal**

Conclusion Meets clearance and size goals – Clears fully loaded landing – Clears tail strike – Safe distance from exhaust – Fits a pair of golf bags or 2 pairs of skis Easy access

Recommendations Find more on how the exhaust affects pod See if clearance can be increased for landing and tail strike More study of water tight seal on access door

Individual Report Cody Candler 70 Hours Tasks – Location of the center of gravity Ensure it meets ground requirements – Aerodynamics Analysis – Range Optimization

Reference points of the front and back of the cargo pod while attached (Figure 6-1 out of the Cirrus Manual)

C.G. of the aircraft with the pod attached Sample Loading Pilot – 200 lbs Passenger – 200 lbs Fuel – 486 lbs (full tank) Cargo Pod – 100 lbs Center of Gravity Limits No Luggage Luggage – 25 lbs Luggage – 50 lbs C.G. of pod located at FS Moment Limits

Used Component Buildup Method out of Aircraft Design: A Conceptual Approach by Raymer Approach used: Find flat-plate skin-friction drag coefficient (C f ) – Assumed complete turbulent flow Find the component “form factor” (FF) – estimates the pressure drag due to viscous separation – assumed the pod to be a fuselage where – A max is the maximum cross-sectional area of the pod which is ft 2 – l is the length of the cargo pod (6.583 ft) Estimate C D for cargo pod

C D Estimate cont… Determine interference effects on the component drag (Q) – Raymer says if the component is mounted less than one diameter away from the fuselage then the Q factor is 1.3 Find the wetted area (S wet ) – Total exposed surface area Calculate total component drag S ref of SR-22 wing is ft 2 Result: C D =

Extra power needed with pod attached Use general power required equation P R = T R V ∞ In steady, unaccelerated flight T R = Drag (in our case, drag is increased drag from pod) For each altitude, I used the cruise performance data from the Cirrus manual – I only used data where engine was operating at 2700 RPM since the engine has a rating of 310 hp at 2700 RPM – This gives a conservative estimation of the additional power needed to travel at the same velocity with the pod attached as when it isn’t attached

Effects on Velocity Calculate an approximate C D of the SR-22 using the cruise performance data out of the Cirrus manual Add the cargo pod component drag coefficient to the total aircraft drag coefficient At 2700 RPM and same power, calculate velocity of aircraft with the pod attached and without the pod attached Result 7% decrease in velocity with the pod attached

Sample streamlines around the cargo pod

Sample Pressure Distribution on Pod

Sample Pressure Distribution on the pod with a crosswind Crosswind

Maximum Speed with Cargo Pod Attached Conditions: Get to a location as fast as possible 4 hours endurance 81 gallons of usable fuel Weight: 3400 lbs Take off from sea-level No wind Results w/o Pod: Optimal Cruise Altitude: ft Fuel to taxi: 1.5 gal Fuel to climb: 4.4 gal Fuel to cruise: GPH 45 min IFR fuel reserve: 9.8 gal Airspeed: 178 KTAS Range: 785 nautical miles Adjusted results for attached cargo pod: Airspeed: KTAS (7% reduction) Range: 730 nautical miles Endurance of 4.3 hours

Maximum Range with Cargo Pod Attached Conditions: Maximum range 81 gallons of useable fuel Weight: 3400 lbs Takeoff from sea level No wind Results w/o Pod: Optimal Cruise Altitude: ft Fuel to taxi: 1.5 gal Fuel to climb: 5.3 gal Fuel to cruise: GPH 45 min IFR fuel reserve: 9.8 gal Airspeed: 169 KTAS Range: 1006 nautical miles Adjusted results for attached cargo pod: Airspeed: KTAS (7% reduction) Range: 935 nautical miles Endurance of 5.8 hours

Conclusions Due to the restriction of the center of gravity of the cargo pod (FS 148.0) a weight of at least 25 lbs must be added to the luggage compartment for the SR-22 to be safe to fly A 4 – 8% increase in power is needed to travel at the same speed with the cargo pod attached as it would without the pod attached The cargo pod decreases the velocity of the SR-22 by approximately 7% when attached The maximum range of the SR-22 with a full tank of fuel and the cargo pod attached is 935 miles The customer would need to sacrifice range or use more fuel when operating with the cargo pod attached

Recommendations Mesh top of pod to the bottom of the fuselage to reduce the drag area and increase performance – Free up room to move the pod further back on the fuselage, which would move the C.G. aft and maybe eliminate the need for a requirement of 25 lbs of luggage Spend more time studying pressure hot spots – Contour the front of the pod more to further reduce drag – Revise the back half of the pod to prevent flow separation and reduce drag

Individual Report Dan Poniatowski 75 hours of work Accomplishments – Documented and managed schedule and Gantt Chart – Documented requirements – Facilitated communication between the team and the sponsors – Coordinated trips to the Cirrus factory in Duluth – Facilitated FMEA and Environmental/Societal Impact analysis – Produced a Design Summary for the belly pod consistent with Cirrus’ method of documentation

ProblemProbabilitySeverityMitigation High Lift Device Flutter due to failureLowHighPull Parachute. High Lift Device Flutter due to aerodynamicsMediumHigh Test for natural frequencies. Avoid frequencies of prop and install dampening. Cable/Mechanical FailureLowHighPull Parachute. High Lift Device Extension/Retraction FailureLow Install mechanical indicator to inform pilot. Spin EntryMedium Install warning placards and mandate anti-spin pilot training. High Lift Device DetachmentLowHighDesign fasteners to release when a partial failure occurs. Pull Parachute. IcingHighVariesIncorporate existing deicing equipment into new design. Collision DamageMedium Reinforce leading edge. Pull Parachute. Wing DetachmentLowVery HighPull Parachute. Internal Fuel LeakLowMedium Install fluid detector and warning device. Instruct pilot to deactivate electronics and land immediately. External Fuel LeakLow Instruct pilot to land immediately. Lightning StrikeMedium Install dissipating mesh in the wing and high lift devices. Heat DamageMediumLowList warnings in Pilot's Operating Handbook. ProblemProbabilitySeverityMitigation Pod hits the groundMediumLowFasteners designed to shear off and release pod. Partial Attachment FailureLowHighRemaining attach points designed to shear off. Foreign Object CollisionMediumLowReinforce the nose of the pod. Front End OverheatingHighMediumAttach a metal heat sheild to the nose. High G FailureMediumHighDesigned to withstand a 3G manuever. CG Out of Balance Due to LoadingHigh Warn the pilot in the Pilot's Operating Handbook and install placards. Failure Modes and Effects Analysis

ProblemCategorySeverityMitigation High performance wing causes society to distrust general aviation as a result of accidents.SocietyLowPress releases on the advantages of the new wing design. Wing performs well enough to edge competitors out of the market.GlobalLowSharing of new wing technology. Complexity of high lift device design deters new pilots.SocietyLowSimplification of pilot interface. ProblemCategorySeverityMitigation Pod is used for smuggling drugs.SocietyLow Pod is used by terrorists to deliver weapons.SocietyHigh Pod is used as a chemical distribution tank.EnvironmentMedium Additional power required for use of pod consumes more fuel.EnvironmentVery LowMake pod easy to remove when not in use. Environmental, Societal, and Global Impacts

Pod Design Summary Follows Cirrus’ Method of Documentation Documents design requirements and goals. Documents the design concepts along with pros, cons, risks and mitigation. Documents the design process to provide insight to further investigation.

Pod Design Summary

Conclusions and Recommendations Gantt chart was useful for planning purposes Wiki was useful for common file sharing Requirements were recorded in a common location, a more stringent process would be useful. Schedule more time for risk mitigation Schedule more reviews during the design process Be more aggressive in achieving results and ensuring metrics are being met.