A. Abhari CPS2131 Sequential Circuits Most digital systems like digital watches, digital phones, digital computers, digital traffic light controllers and.

Slides:



Advertisements
Similar presentations
Sequential Logic ENEL 111. Sequential Logic Circuits So far we have only considered circuits where the output is purely a function of the inputs With.
Advertisements

EE 5900 Advanced Algorithms for Robust VLSI CAD, Spring 2009 Sequential Circuits.
COE 202: Digital Logic Design Sequential Circuits Part 1 Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office: Ahmad Almulhem, KFUPM.
1 Fundamentals of Computer Science Sequential Circuits.
CHAPTER 3 Sequential Logic/ Circuits.  Concept of Sequential Logic  Latch and Flip-flops (FFs)  Shift Registers and Application  Counters (Types,
Computer Architecture CS 215
Classification of Digital Circuits  Combinational. Output depends only on current input values.  Sequential. Output depends on current input values and.
Sequential Circuits1 DIGITAL LOGIC DESIGN by Dr. Fenghui Yao Tennessee State University Department of Computer Science Nashville, TN.
Synchronous Sequential Logic
Digital Electronics Chapter 5 Synchronous Sequential Logic.
Module 12.  In Module 9, 10, 11, you have been introduced to examples of combinational logic circuits whereby the outputs are entirely dependent on the.
Overview Part 1 - Storage Elements and Analysis
CPEN Digital System Design Chapter 5 Sequential Circuits Storage Elements and Sequential Circuit Analysis C. Gerousis © Logic and Computer Design.
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 5 – Sequential Circuits Logic and Computer.
CSCE 211: Digital Logic Design. Chapter 6: Analysis of Sequential Systems.
Circuits require memory to store intermediate data
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 5 – Sequential Circuits Part 1 – Storage.
Digital Logic Design Lecture 22. Announcements Homework 7 due today Homework 8 on course webpage, due 11/20. Recitation quiz on Monday on material from.
1 © 2014 B. Wilkinson Modification date: Dec Sequential Logic Circuits – I Flip-Flops A sequential circuit is a logic components whose outputs.
Sequential Circuit Analysis & Design Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals Dr. Aiman H. El-Maleh.
EKT 124 / 3 DIGITAL ELEKTRONIC 1
1. 2 Logic Circuits Sequential Circuits Combinational Circuits Consists of logic gates whose outputs are determined from the current combination of inputs.
Sequential Logic Flip-Flops and Related Devices Dr. Rebhi S. Baraka Logic Design (CSCI 2301) Department of Computer Science Faculty.
CS 151 Digital Systems Design Lecture 20 Sequential Circuits: Flip flops.
Sequential Circuits. 2 Sequential vs. Combinational Combinational Logic:  Output depends only on current input −TV channel selector (0-9) Sequential.
EE 4271 VLSI Design, Fall 2010 Sequential Circuits.
So far, all of the logic circuits we have studied were basically based on the analysis and design of combinational digital circuits. The other major aspect.
Digital Logic Design CHAPTER 5 Sequential Logic. 2 Sequential Circuits Combinational circuits – The outputs are entirely dependent on the current inputs.
Sequential Circuits Chapter 4 S. Dandamudi To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer,  S.
Lecture 10 Topics: Sequential circuits Basic concepts Clocks
Digital Computer Design Fundamental
COE 202: Digital Logic Design Sequential Circuits Part 1
EE2174: Digital Logic and Lab Professor Shiyan Hu Department of Electrical and Computer Engineering Michigan Technological University CHAPTER 9 Sequential.
Synchronous Sequential Logic Chapter 5. Digital Circuits Sequential Circuits Combinational circuits contains no memory elements the outputs depends.
Chap 4. Sequential Circuits
Unit 11 Latches and Flip-Flops Fundamentals of Logic Design By Roth and Kinney.
Synchronous Sequential Circuits by Dr. Amin Danial Asham.
Instructor: Alexander Stoytchev CprE 281: Digital Logic.
Chapter 10 Flip-Flops and Registers 1. Objectives You should be able to: Explain the internal circuit operation of S-R and gated S-R flip-flops. Explain.
1 Lecture #11 EGR 277 – Digital Logic Ch. 5 - Synchronous Sequential Logic There are two primary classifications of logic circuits: 1.Combinational logic.
1 Synchronous Sequential Logic Sequential Circuits Every digital system is likely to have combinational circuits, most systems encountered in practice.

Synchronous Sequential Logic A digital system has combinational logic as well as sequential logic. The latter includes storage elements. feedback path.
Synchronous Sequential Logic Part I
5 Chapter Synchronous Sequential Circuits 1. Logic Circuits- Review 2 Logic Circuits Sequential Circuits Combinational Circuits Consists of logic gates.
Sahar Mosleh PageCalifornia State University San Marcos 1 More on Flip Flop State Table and State Diagram.
Chapter5: Synchronous Sequential Logic – Part 1
Synchronous Sequential Circuits by Dr. Amin Danial Asham.
CS151 Introduction to Digital Design Chapter 5: Sequential Circuits 5-1 : Sequential Circuit Definition 5-2: Latches 1Created by: Ms.Amany AlSaleh.
Synchronous Sequential Circuits by Dr. Amin Danial Asham.
5 - 1 Chapter 6 Analysis of Sequential Systems Chapter 6 Analysis of Sequential Systems 6.0 Introduction  Clocked System Clock A signal that alternates.
CENG 241 Digital Design 1 Lecture 7 Amirali Baniasadi
1. 2 Logic Circuits Sequential Circuits Combinational Circuits Consists of logic gates whose outputs are determined from the current combination of inputs.
Sequential logic circuits First Class 1Dr. AMMAR ABDUL-HAMED KHADER.
2018/5/2 EE 4271 VLSI Design, Fall 2016 Sequential Circuits.
FIGURE 5.1 Block diagram of sequential circuit
Digital Design Lecture 9
2018/8/29 EE 4271 VLSI Design, Fall 2013 Sequential Circuits.
Sequential Circuits Most digital systems like digital watches, digital phones, digital computers, digital traffic light controllers and so on require.
Assistant Prof. Fareena Saqib Florida Institute of Technology
ECE Digital logic Lecture 16: Synchronous Sequential Logic
Sequential logic circuits
Reference: Chapter 5 Sequential Circuits Moris Mano 4th Ediditon
FLIP-FLOPS.
Synchronous sequential
Synchronous Sequential
Flip-Flops.
Sequential Circuits UNIT- IV
SEQUENTIAL CIRCUITS __________________________________________________
2019/9/26 EE 4271 VLSI Design, Fall 2012 Sequential Circuits.
Presentation transcript:

A. Abhari CPS2131 Sequential Circuits Most digital systems like digital watches, digital phones, digital computers, digital traffic light controllers and so on require memory elements Memory elements are digital circuits that can store and retrieve data in the form of 1's and 0's. The output of the systems with memory depends not only on present inputs but also on what has happened in the past SR latch is an example of memory circuits that can store one bit of information

A. Abhari CPS2132 SR Latch When SR latch is storing a 1 then its Q is 1 and when storing 0 its Q is 0 R Q S Q’

A. Abhari CPS2133 SR Latch 1.If SR=10 then Q=1 and the latch is storing a 1, We call this setting the Latch. 2.If SR =10 and we change to SR=00 then the latch will remain set with Q= 1. In other words it "remembers" to stay set 3.If SR=01 then Q=0 and the latch is storing a 0. We call this resetting or Clearing the latch 4.If SR =01 and we change to SR=00 then the latch will remain set with Q= 0. We call the value of Q at any given time the state of the latch

A. Abhari CPS2134 SR Latch The circuit (in next slide) with NOR gates is able to do this because of the feedback from the output back to the input Note that both Q and Q' are "brought back" and connected to the inputs of the NOR gates If both S (set) and R (reset) are 1 an undefined state with both output equal to 0 occurs ( it means the SET and RESET commands are issuing at the same time).

A. Abhari CPS2135

6 SR Latch The SR latch with two cross-coupled NAND gate is shown in next slide. By setting S to 0 the output Q will be 1 that putting the latch in the set state If S goes to 1 the circuit remains in set state By setting R to 0 the circuit goes to reset state and stay there even after both input returns to 1 The undefined state is when both input are 0 Because NAND latch requires 0 signal to change its state it is also called S’-R’ latch

A. Abhari CPS2137

8 Synchronous vs. Asynchronous The behavior of a synchronous sequential circuit depends upon the any input signal at any instant of time and order of input change. This synchronization is achieved by clock generators that provides clock pulses (see the next slide). The storage elements used in clocked sequential circuits are called flip-flops. In asynchronous sequential circuits the storage elements are time delay devices (i.e., storage is because of their propagation delay). They implemented by feedback that may cause instability in Asynchronous circuits.

A. Abhari CPS2139

10

A. Abhari CPS21311 D latch is designed to eliminate the indeterminate state in SR latch by making sure that inputs S and R are never equal to 1 at the same time

A. Abhari CPS21312

A. Abhari CPS21313 JKFF The JK flip-flop is an SRFF with some additional gating logic on the inputs in which the SR=11 (undetermined condition) doesn’t exist J is used for the set and K is used for reset J K Q Q Q’

A. Abhari CPS21314 TFF By connecting K and J we can make TFF Qt T Qt Qt Q’t 1 1 0

A. Abhari CPS21315 Edge-Triggered vs. Level sensitive ET FF: Transition (output change) can happen only during clock pulse transition Clock pulse transition can be positive clock transition or negative clock transition Level Sensitive FF: as long as the pulse level is up or down output can change Level sensitive clock is less favorite because depending on the duration of pulse, output may change a number of times

A. Abhari CPS21316

A. Abhari CPS21317 Master-Slave FF (Edge-Trigger FF) Is a combination of 2 FFS. The first FF is master and responds to positive level of clock The 2nd FF is slave and responds to negative level of clock Therefore, the final output changes only during 1 to 0 transition of clock. It means during the duration of clock pulses changes in input do not have effect on output.

A. Abhari CPS21318

A. Abhari CPS21319 Analysis of Clocked Sequential Circuits The behaviour of circuit can be described by state equation For example for the circuit (next slide) the state equations are as the follows: A(t+1) = A(t)x(t) + B(t)x(t) B(t+1)= A’(t).x y(t) = (B(t) + A(t)).x’(t)

A. Abhari CPS21320

A. Abhari CPS21321 State Table The time sequence of inputs, outputs and flip- flop states can be enumerated in a state table or transition table In the state table the present state that shows the state of flip flops comes first. So n flip flops need n present states. The inputs, next state and output come after. The combination of present state and inputs makes state table. Output and next state can be derived from the state equations

A. Abhari CPS21322 State Table There are two types of for state tables: Mealy Model: In this model sequential circuit or state table the outputs depends on inputs as well as states Moor Model: Where output depends on state. For example 2-D version of state table for previous circuit. Where there are only 4 different states and for each state the next states and outputs should be found based on the given inputs.

A. Abhari CPS21323 State Diagram Is the graphically representation of state table. Each state should be circled so for example if we have n flip flops we have 2 n states or n circles Each circle should be labeled by a binary number. By using the state table the arrows can be drawn which show changes from each state to another state. At the top of each arrow input/output is shown Also at the top of each arrow only input(s) can be shown. See next slide

A. Abhari CPS21324

A. Abhari CPS21325 Analysis with D Flip Flop Next slide is analysis of a D flip flop with one dimensional state table and a state diagram based on Moor Model Note that two dimensional table state is little bit difficult when there are more inputs and will not discussed here

A. Abhari CPS21326

A. Abhari CPS21327 Analysis with JKFF 1.Determine input equations in terms of present state and input varaiables 2.List binary values of each equation 3.Use the corresponding flip-flop characteristics table to determine the next state value in the state table

A. Abhari CPS21328

A. Abhari CPS21329

A. Abhari CPS21330 Analysis with T Flip-Flops

A. Abhari CPS21331 Design Procedure for Sequential Circuit 1.Get state diagram 2.Assign binary codes to states 3.Determine number of FFS( N FFS: 2 N states) 4.Get FF input equations (from next state) 5.Get output equations (from output entries) 6.Simplify Equations 7.Draw logic diagram using DFF/logic gates

A. Abhari CPS21332 Design Procedure for Sequential Circuit For example to design a circuit that detects three or more consecutive 1’s in a string of bits coming through an input line we should follow these steps (see next slides)

A. Abhari CPS21333

A. Abhari CPS21334

A. Abhari CPS21335