Information from the Cosmos

Slides:



Advertisements
Similar presentations
Introduction to Astrophysics Lecture 3: Light. Properties of light Light propagates as a wave, and corresponds to oscillations of electric and magnetic.
Advertisements

WAVES CARRY ENERGY! MECHANICAL WAVES
Light and Atoms Chapter 3.
WAVES A wave is a rhythmic disturbance that TRANSFERS ENERGY.
Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic radiation: Light Infrared Ultraviolet Microwaves.
Waves.
Ch 17 & 18. You know about waves? What do they look like? What do they do? How fast are they? Where are they? What are the different kinds? What do you.
ASTRONOMY 161 Introduction to Solar System Astronomy Class 9.
Light Solar System Astronomy Chapter 4. Light & Matter Light tells us about matter Almost all the information we receive from space is in the form of.
PHYS 206 Matter and Light At least 95% of the celestial information we receive is in the form of light. Therefore we need to know what light is and where.
How does one differentiate between transverse and longitudinal waves?
Chapter 5 Basic properties of light and matter. What can we learn by observing light from distant objects? How do we collect light from distant objects?
A) gamma rays b) infrared c) sound d) visible light e) radio Which of these is NOT a form of electromagnetic radiation? Question 1.
ElectroMagnetic Radiation Spectrum The basics about light and waves.
4.4.1 Wave pulse: a wave pulse is a short wave with no repeated oscillations Progressive wave: a wave that moves through a medium transferring energy as.
Index Unit 03 Electron Configuration Module 01: Light as a Wave Based on the PowerPoints By Mr. Kevin Boudreaux, Angelo State Univerisity U03Mod01 Light.
Information from the Cosmos
Chapter 17 & 18 Waves.
Objectives Chapter 14 Recognize that waves transfer energy.
Waves PSC1341 Chapter 4. Waves A wave is a repeating disturbance or movement that transfers energy through matter or space Waves can be mechanical and.
Chapter 7 Light.
Chapter 3 Light and Matter
Blackbody Radiation & Atomic Spectra. “Light” – From gamma-rays to radio waves The vast majority of information we have about astronomical objects comes.
Chapter 3 Radiation. Units of Chapter Information from the Skies 3.2 Waves in What? The Wave Nature of Radiation 3.3 The Electromagnetic Spectrum.
Lecture Outlines Astronomy Today 7th Edition Chaisson/McMillan © 2011 Pearson Education, Inc. Chapter 3.
Nuclear Atom and Unanswered Questions
Waves. The Nature of Waves What is a mechanical wave?  A wave is a repeating disturbance or movement that transfers energy through matter or space 
3.1 - RADIATION.  When you admire the colors of a rainbow, you are seeing light behave as a wave.  When you use a digital camera to take a picture of.
1 Waves and Vibrations Spectra of Science Amole. 2 Waves are everywhere in nature Sound waves, visible light waves, radio waves, microwaves, water waves,
1 Sound & Light Chapter Sound  Sound waves are caused by vibrations, and carry energy through a medium.  Sound waves are longitudinal waves. 
WAVES. Types of waves There are three types of waves: Mechanical waves require a material medium to travel (air, water, ropes). These waves are divided.
The Nature of Waves What is a wave? A wave is a repeating disturbance or movement that transfers energy through matter or space Waves transfer energy.
Light hits Matter: Refraction Light travels at different speeds in vacuum, air, and other substances When light hits the material at an angle, part of.
WAVES. COS 9.0, 9.1,9.2 WHAT YOU’LL LEARN Recognize that waves transfer energy. Distinguish between mechanical waves and electromagnetic waves. Explain.
Waves Harmonic Motion, Wave Types, Wave Speed, Interference.
Waves carry energy from one place to another WAVES: SOUND & LIGHT.
Light 1)Exam Review 2)Introduction 3)Light Waves 4)Atoms 5)Light Sources October 14, 2002.
Chapter 18 – The Electromagnetic Spectrum and Light
Chapter 3 Radiation. Units of Chapter Information from the Skies 3.2 Waves in What? The Wave Nature of Radiation 3.3 The Electromagnetic Spectrum.
NATS From the Cosmos to Earth Nuclear Fission Neutron strikes nucleus - breaks it apart into two separate atoms - different elements - releases.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 2 Light and Matter.
Waves and Properties of Light
© 2004 Jones and Bartlett Publishers Chapter thru 4-4 Light and the Electromagnetic Spectrum Courtesy of Astrophysics Data Facility at the NASA Goddard.
Electromagnetic Spectrum and Quantized Energy Why the electron is what it is.
WAVES, SOUND, AND LIGHT Students will explore the wave nature of sound and electromagnetic radiation.
Waves Chemistry Mrs. Coyle
Light is a Particle Physics 12.
Chapter 14 Forms of Energy. What is Sound Energy? is a wave of vibrations that spreads from its source. As sound travels through a material, the molecules.
Waves. What are waves? A wave is a transfer of energy from one place to another. Waves take many forms. Wave Characteristics include: –Amplitude –Wavelength.
What is Energy? “Energy” is defined as the ability to do work Work is using energy to move something.
Waves, Sound, Light and the Electromagnetic Spectrum Notes.
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 3.
Introducing Astronomy (chap. 1-6) Introduction To Modern Astronomy I Ch1: Astronomy and the Universe Ch2: Knowing the Heavens Ch3: Eclipses and the Motion.
Radiation in Astronomy Electromagnetic Radiation I. Electromagnetic Radiation (EM) (EM) Energy travels through space as EM. $ Electromagnetic electric.
© 2017 Pearson Education, Inc.
Waves Friday, January 8, 2010.
Radiation in Astronomy
Electromagnetic Radiation
Chapter 14 and 15.
How do we obtain detailed information about the Universe?
WAVES.
Waves & Sound I. Characteristics of Waves Waves Transverse waves
Waves Physical Science.
Radiation, Spectroscopy, and Telescopes
Wave interactions EQ: How is energy transferred in waves?
Energy may ______________________________as a wave travels.
Chapter 2 Energy in transit
Waves.
Energy may ______________________________as a wave travels.
Electromagnetic Radiation
Presentation transcript:

Information from the Cosmos Radiation Information from the Cosmos

Radiation,Waves, & Information Most of the information around us gets to us in waves. Sound energy that travels to our ears is in one form of wave. Light is energy that comes to our eyes if the form of another type of wave. Energy (information) that is transferred from place to place in the form of a wave is called RADIATION.

Information from the Cosmos Until recently, our knowledge of the universe was obtained only by studying the visible light that happened to arrive on Earth. Since the 1930’s, possible to study other types of radiation and particles --- radio waves, X-rays, gamma rays, cosmic rays, neutrinos, and gravitational radiation. To understand the methods used to study the cosmos, we must understand the basic nature and behavior of light.

It is neither, but it’s like both So, what is light? The particle or ray model of light is illustrated by the properties of reflection and refraction. Is it a particle? The wave model of light is illustrated by the properties of reflection, refraction, diffraction, interference, and polarization. Is it a wave? But there are problems: if light is a wave, and waves need a “medium” such as air or water to carry them, then how can light travel through empty space? It is neither, but it’s like both The solution was to decide that light was neither a wave nor a particle, but something else which sometimes behaved like them.

What is a Wave? Wave motion is NOT a mechanical phenomenon because a wave is not a material object but a form. It cannot be assigned a mass, and the concept of acceleration cannot be applied to a wave. The motion of a wave is vastly different from the motion of the medium in which it travels. In fact, a wave can exist without any movement of matter at all! So, what is a wave? It is a pattern or form that moves. It can be a deformation of a material object (music string or waves on the surface of a body of water) OR pattern in a field (light or radio waves).

Waves: Standard Dimensions In physics, waves are described by a few standard dimensions. Amplitude A= height of wave above “rest position” Wavelength  = length of one cycle Frequency f = how often wave crest passes, longer wavelength means lower frequency Velocity v= speed of wave v = f x 

period = 1 / frequency OR frequency = 1 / period Frequency and Period Frequency: how often a vibration (cycle, repetition) occurs in some interval of time, # vibrations (or cycles) per unit time. units are Hertz (Hz) 1-Hz = 1 vibration/sec = 1 cycle/sec 103 Hz = kHz (AM radio frequencies) 106 Hz = MHz (FM radio frequencies) Period: the time to complete one vibration (or cycle), the inverse of the frequency period = 1 / frequency OR frequency = 1 / period

Wave Speed The speed of some waves depends on the medium through which the wave travels. Sound waves travel at speeds of 330 - 350 m/s in air, and about four times as fast in water. The speed of the wave is related to the frequency and wavelength of the wave. Wave speed = frequency x wavelength

Motion of Waves Is there a relationship between the motion of the wave through space and the motion of the medium that a wave moves in?

Wave Types Two types of waves transverse longitudinal Cheerleader demo

Types of waves Transverse waves: the motion of the medium is at right angles to the direction in which the wave travels. Examples: stretched strings of musical instruments, waves on the surfaces of liquids, some of the waves produced in earthquakes. Although they require no “medium” to travel, electromagnetic waves are also transverse waves. Longitudinal waves: the particles in the medium move along the direction of the wave; travel in solids, liquids, and gases. Examples: sound waves, some of the waves produced in earthquakes.

Do waves travel through empty space? What if there is no medium to move in? Can any waves travel through empty space? If so, which ones?

Light as a Wave Light is a type of radiation; it is a type of wave that travels through space. Light waves are fundamentally different from many other waves that travel only through material media (sound or water waves). Light waves require NO material medium to travel from place to place. The wave speed of all types of light in a vacuum is called the speed of light, c. c = 300,000 km/sec

Terminology Radiation: Light: Electromagnetic (EM) radiation: a way to transfer of energy in the form of a wave Light: another name for electromagnetic radiation Electromagnetic (EM) radiation: Also known as light, transfers energy and information from one place to another (in form of coupled electric and magnetic waves) Visible light: the range of electromagnetic radiation that the human eyes perceive as visible Need to understand these

Group Question Determine the wavelength of your group’s favorite radio station. Assume you are 100 km (~60 miles) from the station transmitter. Calculate how long it takes for the radio waves to arrive at your location from the radio station transmitter. Wave speed = frequency x wavelength Speed of light (radio waves) = c = 3x 108m/sec Distance = speed x time x103 Hz (AM radio frequencies) x106 Hz (FM radio frequencies)

Creating Electromagnetic Waves All matter is made up of atoms. Atoms are, in turn, made up of smaller particles: protons, electrons, and neutrons. Two of the elementary particles that make up atoms possess a property described as electrical charge. The charges on each are equal and opposite. electron: - charge proton: + charge

Charged Particle Interactions Any electrically charged object exerts a force on other charged objects. Electrons negatively charged Protons positively charged Like charges repel one another. Unlike charges attract.

Electrical Force Electrical force: is a universal force (every charged particle affects every other charged particle) may be attractive or repulsive force is always directed along the line connecting two charges depends on the product of the two charges depends on the distance between the two charges squared (obeys the “inverse square rule”) Today, physicists describe electric forces in terms of an electrical field produced by the presence of electrical charge.

Charged Particles and Electric Fields Electric field strength proportional to 1/r2 . An electric field extends outward in all directions from any positively charged particle. If a charged particle moves, its electric field changes. The resulting disturbance travels through space as a wave.

Magnetic Fields If an electric field changes with time (let’s say the source charge wiggles), then a magnetic field is created, coupled to the time-variant electric field. Magnetic fields influence behavior of magnetized objects. Earth’s magnetic field causes compass needles to point N bar magnets electromagnets A simplistic explanation of magnetic fields

Electromagnetism Electric and magnetic fields do not exist as independent entities. They are different aspects of a single phenomenon: Electromagnetism (EMR) Together, they constitute an electromagnetic wave that carries energy and information from one part of the universe to another.

where h = Planck’s constant Frequency and Energy Light waves carry energy (E) across space. The energy is related to the frequency of the light wave by E = hf where h = Planck’s constant Recall that wave speed relates frequency and wavelength: v = f and for light, c = f so, E  f or E  1/

Creating and Detecting Light Light is created by the motion of charged particles. Matter is made up of atoms, which are in turn made up of charged particles. Motions of these charged particles create light. Not just the light we detect with our eyes, but at all wavelengths (or frequencies).

Electromagnetic Spectrum

Properties of Light Polarization Reflection Refraction Dispersion Diffraction Interference

Properties of Light: Reflection and Refraction An isolated light beam travels in a straight line. Light can change directions under certain conditions: Reflection from a surface, mirrors, objects Refraction (or bending of a ray of light) as the ray travels from one transparent medium to another. pencil in a clear glass of water light through a piece of glass

Properties of Light: Dispersion Electromagnetic waves interact with the charged particles in matter and travel more slowly in transparent media than in a vacuum. The change in speed of the light wave causes the wave to refract. Since the speed of an EM wave in a medium changes with wavelength, the amount of refraction depends on the wavelength. This effect is called dispersion.

Visible Light Prism will separate light into its components Composed of 7 hues (Roy G. Biv), known as its spectrum Red (~ 700 nm or 7000 Å) Orange Yellow Green Blue Indigo Violet (~ 400 nm or 4000 Å) Color determined by its frequency (or, equivalently, its wavelength) The sequence of colors red, orange, yellow, green, blue, and violet may be remembered by memorizing the name of that fine fellow "ROY G. BV". This was originally "ROY G. BIV", because it used to be common to call the region between blue and violet "indigo". In modern usage, indigo is not usually distinguished as a separate color in the visible spectrum; thus Roy no longer has any vowels in his last name. (from http://csep10.phys.utk.edu/astr162/lect/light/spectrum.html )

Visible Spectrum Red Orange Yellow Green Blue Violet

Properties of Light: Diffraction Diffraction is the bending of a wave as it passes through a hole or around an obstacle. If light consists of parallel rays, they would travel through a small pinhole and make a small, bright spot on a nearby screen. Fuzzy shadow Sharp-edged shadow Effect cannot be explained by ray model of light.

Diffraction of Waves Actually observe a spot larger than the pinhole and varying in brightness. The pinhole somehow affects the light that passes through it. Diffraction is proportional to the ratio of wavelength to width of gap. The longer the wavelength and/or the smaller the gap, the greater the angle through which the wave is diffracted. Fuzzy shadow

Properties of Light: Interference and Superposition What happens if two waves run into each other? Waves can interact and combine with each other, resulting in a composite form. Interference is the interaction of the two waves. reinforcing interaction = constructive interference canceling interaction = destructive interference Superposition is the method used to model the composite form of the resulting wave.

Interference of Waves Interference: ability of two or more waves to reinforce or cancel each other. Constructive interference occurs when two wave motions reinforce each other, resulting in a wave of greater amplitude. Destructive interference occurs when two waves exactly cancel, so that no net motion remains.

Radiation and Temperature What determines the type of electromagnetic radiation emitted by the Sun, stars, and other astronomical objects? Temperature Electromagnetic radiation is emitted when electric charges accelerate, changing either the speed or the direction of their motion. The hotter the object, the faster the atoms move in the object, jostling one another, colliding with more electrons, changing their motions with each collision. Each collision results in the emission of electromagnetic radiation- radio, infrared, visible, ultraviolet, x-rays. How much of each depends on the temperature of the object producing the radiation.

Measuring Temperature Atoms and molecules that make up matter are in constant random motion. Temperature is a direct measure of this internal motion. The higher the temperature, the faster (on average) the random motion of particles in matter. Temperature of an object represents the average thermal energy of particles that make up that object.

TWO MAJOR SCALES °F and °C Fahrenheit scale based on temperature that salt water freezes 0°F (lower than pure water). Related to Celsius (or Centigrade) by the formula: F = 9/5 C + 32 C = 5/9(F - 32). Celsius is the metric temperature scale, and thus the one used by scientists

ABSOLUTE SCALE K AND °C Celsius (originally Centigrade) based on freezing and boiling point of pure water, chosen to be 0°C and 100°C Kelvin based on absolute coldest temperature possible (absolute zero) Related by K = C – 273.15 C = K + 273.15 Kelvin is the SI unit, and thus also used by the scientific community. For a good web page on this, go to: http://zebu.uoregon.edu/~js/glossary/temperature_scale.html

All molecular motion stops Temperature Scales Temperature Scale Hydrogen fuses Water boils Water freezes All molecular motion stops Fahrenheit 18,000,032oF 212oF 32oF -459oF Celsius 10,000,000oC 100oC 0oC -273oC Kelvin 10,000,273 K 273 K 373 K 0 K

Radiation Laws Blackbody Radiation Wien’s Law Stefan-Boltzmann Law Planck Spectrum Characteristics of Radiator Wien’s Law Relates wavelength at which a blackbody emits its maximum energy, max, to the temperature, T, of the blackbody. Stefan-Boltzmann Law Relates total energy emitted per second per square meter by a blackbody, E, to the 4th power of its absolute temperature T.

Blackbody Radiation Consider an idealized object that absorbs all the electromagnetic radiation that falls on it - called a “blackbody.” A blackbody absorbs all energy incident on it and heats up until it is emitting energy at the same rate that it absorbs energy. The equilibrium temperature reached is a function of the total energy striking the blackbody each second.

Characteristics of Blackbody Radiation A blackbody with a temperature higher than absolute zero emits some energy at all frequencies (or wavelengths). A blackbody at higher temperature emits more energy at all frequencies (or wavelengths) than does a cooler one. The higher the temperature of a blackbody, the higher the frequency (the shorter the wavelength) at which the maximum energy is emitted.

Blackbody Radiation Blackbody radiation: the distribution of radiation emitted by any heated object. The curve peaks at a single, well-defined frequency and falls off to lesser values above and below that frequency. The overall shape (intensity vs frequency) is characteristic of the radiation emitted by any object, regardless of its size, shape, composition, or temperature.

Planck Spectrum As an object is heated, the radiation it emits peaks at higher and higher frequencies. Shown here are curves corresponding to temperatures of 300 K (room temperature), 1000 K (glow dull red), 4000 K (red hot), and 7000 K (white hot).

“Red Hot” As something begins to heat-up, there probably isn’t any visible information to tell you it is warming up. Once it starts to glow red, you have learned it’s hot – don’t touch. Like the stove burners. As it continues getting hotter, it changes to orange, then yellow, green, blue and white. White because all visible wavelengths are represented fairly evenly. With light, black is the absence of color (wavelengths), and white is the presence of all color (wavelengths). This is opposite of pigments where white is absences of color and black is all color combined. Rarely will something have a “sharp blackbody peak” in green, which is why it is rare to see.

This relationship is known as Wien’s law. The Sun and stars emit energy that approximates the energy from a blackbody. It is possible to estimate their temperatures by measuring the energy they emit as a function of wavelength - that is, by measuring their color. The wavelength at which a blackbody emits its maximum energy can be calculated by  max = 3,000,000 / T where the wavelength  max is in nanometers (10-9 m) and the temperature T is in kelvin. This relationship is known as Wien’s law.

Hotter objects are brighter and “bluer” than cooler objects. Effect of Temperature Hotter objects are brighter and “bluer” than cooler objects.

Getting Warmer Top picture: a cool gas cloud. 2nd from top: a “cool” infrared emitting star appears reddish. Notice how little the other colors contribute relative to red. 2nd from bottom: our star, the Sun Bottom picture: a star cluster of very hot UV stars. Notice how they appear white.

Electromagnetic Radiation

Problem - Wien’s law The average surface temperature of the Sun is about 5800 K. At what wavelength is maximum energy emitted from the Sun? If T = 5800 K and max = 3,000,000 / T , then max = 3,000,000 / 5800 = 520 nm. 520 nm is at the middle of the visible light portion of the electromagnetic spectrum. The human eye is most sensitive to the wavelengths at which the Sun puts out the most energy.

Stefan-Boltzmann Law If add up the contributions from all parts of the E-M spectrum, obtain the total energy emitted by a blackbody over all wavelengths. That total energy emitted per second per square meter by a blackbody at temperature T is proportional to the 4th power of its absolute temperature. This is known as the Stefan-Boltzmann law, E = T4 where E stands for the total energy and  is a constant number.

Problem - Stefan-Boltzmann Law ET = T4 The average surface temperature of the Sun is about 5800 K. If the Sun were twice as hot, 2 T = 2 x 5800 K = 11,600 K, how much more energy would it radiate than it does now? The energy radiated by the Sun would be 24 or 16 times more than now.

Electromagnetic Spectrum

Electromagnetic Energy from the Sun

Why Do We Need Space Telescopes? Because not all light can make it through the atmosphere – which is a good thing in some cases. Such as Gamma ray, x-ray, and most UV radiation are unable to penetrate the atmosphere and reach down to the ground. If the atmosphere is said to be transparent to a wavelength of light, then that wavelength actually reaches the ground, such as visible light (which is why we see it). Thus, the atmosphere is said to have a window to that wavelength. If the atmosphere is said to be opaque to a wavelength, then it is unable to penetrate the atmosphere and reach the ground. As you can see from the diagram above and on page 71 of your text, some forms of radiation can penetrate to a certain depth, but never actually reach the ground where we are, like infrared.

Opacity of the Atmosphere Only a small fraction of the radiation produced by astronomical objects actually reaches our eyes because atoms and molecules in the Earth's atmosphere absorb certain wavelengths and transmit others. Opacity is proportional to the amount of radiation that is absorbed by the atmosphere. Wavelength (angstroms) Half-Absorption Altitude (km)