1 Effects of solar activity, co-rotating interaction regions, and climate change on thermospheric density during the solar cycle 23/24 minimum Stan Solomon.

Slides:



Advertisements
Similar presentations
Millstone Hill ISR – COSMIC comparison Lei, J., S. Syndergaard, A. G. Burns, S. C. Solomon, W. Wang, Z. Zeng, R. G. Roble, Q. Wu, Y.-H. Kuo, J. M. Holt,
Advertisements

Satellite Observations of Enhanced Pre- Monsoon Aerosol Loading and Tropospheric Warming over the Gangetic-Himalayan Region Ritesh Gautam 1, N. Christina.
The NCAR TIE-GCM: Model Description, Development, and Validation
Thermospheric Response to Transient Joule Heating and Solar-Flare Radiation Yanshi Huang, University of Texas at Arlington Arthur D. Richmond, NCAR High.
CISM All-hands Meeting Boulder, CO Sept CMIT Simulations of the Initial Phase of Geomagnetic Storms Wenbin Wang, Jiuhou Lei, Alan Burns, Stan.
Observing OH Response to the Solar Cycle  Over 5-year Aura MLS OH Measurements in Combination With the 13-year Ground-based FTUVS OH Measurement Shuhui.
Comparative Study of the Global Ionospheric Behavior During Solar Cycles and Minima Eduardo A. Araujo-Pradere 1,2, Dominic Fuller-Rowell 1,3,
29 April 2011Viereck: Space Weather Workshop 2011 The Recent Solar Minimum: How Low Was It? What Were The Consequences? Rodney Viereck NOAA Space Weather.
SBUV/2 Observations of Atmospheric Response to Solar Variations Matthew DeLand Science Systems and Applications, Inc. (SSAI) Background -SBUV/2 instruments.
Spatio-temporal structures of equatorial F-region plasma irregularities & Geomagnetic Regular Daily Variations (Sq, Solar quiet) as seen in space and at.
Space Weather Workshop, Boulder, CO, April 2013 No. 1 Ionospheric plasma irregularities at high latitudes as observed by CHAMP Hermann Lühr and.
Altitude Response of Thermosphere Mass Density to Geomagnetic Activity in the Recent Solar Minimum Jeffrey P. Thayer, Xianjing Lui, and Jiuhou Lei MURI.
Modelling the Thermosphere-Ionosphere Response to Space Weather Effects: the Problem with the Inputs Alan Aylward, George Millward, Alex Lotinga Atmospheric.
Abstract Since the ionosphere is the interface between the Earth and space environments and impacts radio, television and satellite communication, it is.
The EUV spectral irradiance of the Sun from minimum to maximum Giulio Del Zanna Department of Space and Climate Physics University College London Vincenzo.
Modeling Thermosphere Density and Temperature Variations L. Qian 1, S. C. Solomon 1, R. G. Roble 1, B. R. Bowman 2, and F. A. Marcos 3 1 High Altitude.
Neutral Density During the Recent Solar Minimum Contributions from Solar, Geomagnetic Activity, and Anthropogenic Rodney Viereck NOAA Space Weather Prediction.
Comparative Aeronomy at Earth and Mars Paul Withers Boston University In collaboration with Michael Mendillo and BU colleagues, David.
FA III – High Latitude Energy Partitioning and Density Implications Jeff Thayer University of Colorado Team: Mihail Codrescu, Geoff Crowley, Jeff Forbes,
CISM Advisory Council Meeting 4 March Ionosphere-Thermosphere Modeling Tim Killeen, Stan Solomon, and the CISM Ionosphere-Thermosphere Team.
Periodicities of the Solar Wind, Global Electron Power, and Other Indices in 2005 in HSS Barbara A. Emery (NCAR), Ian G. Richardson (GSFC), David S. Evans.
Theoretical Simulations of the Martian Ionosphere and Comparisons to Observations (How do thermospheric tides and variations in solar flux affect ionospheric.
1 Pedagogical Review on Solar Cycles King-Fai Li Caltech GPS, YL Yung Group Jan 17, 2007.
Changes in Atmosphere Density at Satellite Altitudes Caused by… Changes in solar extreme ultraviolet (EUV) radiation, electrical energy extracted from.
Solar Irradiance Variability Rodney Viereck NOAA Space Environment Center Derived Total Solar Irradiance Hoyt and Schatten, 1993 (-5 W/m 2 ) Lean et al.,
The Impact of Composition on the Thermosphere Mass Density during Geomagnetic Activity Jeffrey P. Thayer, Xianjing Lui, Jiuhou Lei, Marcin Pilinski and.
How do gravity waves determine the global distributions of winds, temperature, density and turbulence within a planetary atmosphere? What is the fundamental.
Variation of EUV solar irradiances along the cycle Vincenzo Andretta 1, Giulio Del Zanna 2, Seth Wieman 3 1 INAF – Osservatorio Astronomico di Capodimonte,
Multi-satellite Solar Spectral Irradiance Composite (MUSSIC) M. Snow, J. Machol, & E. Richard University of Colorado LASP & CIRES
Nighttime 4-peak Longitudinal Structure of Ionospheric Plasma Density at Mid-Low latitudes During High and Extreme.
How does the Sun drive the dynamics of Earth’s thermosphere and ionosphere Wenbin Wang, Alan Burns, Liying Qian and Stan Solomon High Altitude Observatory.
Altitude (km) January Global AverageTemperature (K) Pressure (hPa) With O( 3 P) Cooling WACCM-X The Whole Atmosphere Community Climate Model – eXtended.
NADIR workshop - October 27-28, 2010page 1 / 17 Determining the Most Appropriate Solar Inputs for use in Upper Atmosphere Density Models Sean Bruinsma.
Comparison of Solar EUV Irradiance Measurements from CDS and TIMED/EGS W. T. Thompson L3 Communications EER, NASA GSFC P. Brekke ESA Space Science Department.
Photoelectrons as a tool to evaluate Solar EUV and XUV model irradiance spectra on Solar rotation time scales W.K. Peterson 1, T.N. Woods 1, J.M. Fontenla.
Jeff Forbes (CU), Xiaoli Zhang (CU), Sean Bruinsma (CNES), Jens Oberheide (Clemson U), Jason Leonard (CU) 1 Coupling to the Lower Atmosphere, an Observation-Based.
Localized Thermospheric Energy Deposition Observed by DMSP Spacecraft D. J. Knipp 1,2, 1 Unversity of Colorado, Boulder, CO, USA 2 High Altitude Observatory,
Scott M. Bailey, LWS Workshop March 24, 2004 The Observed Response of the Lower Thermosphere to Solar Energetic Inputs Scott M. Bailey, Erica M. Rodgers,
Comparison of Magnesium II Core-to-Wing Ratio Measurements J. Machol 1,2*, M. Snow 3, R. Viereck 4, M. Weber 5, E. Richard 3, L. Puga 4 1 NOAA/National.
1 The effects of solar flares on planetary ionospheres Paul Withers and Michael Mendillo Boston University 725 Commonwealth Avenue, Boston MA 02215, USA.
An assessment of the NRLMSISE-00 density thermosphere description in presence of space weather events C. Lathuillère and M. Menvielle The data and the.
The Thermosphere/Ionosphere Response to Solar Activity During the October/November 2003 Storms P. R. Straus 1, G. Crowley 2, R. R. Meier 3, L. J. Paxton.
SOLSTICE II -- Magnesium II M. Snow 1*, J. Machol 2,3, R. Viereck 4, M. Weber 5, E. Richard 1 1 Laboratory for Atmospheric and Space Physics, University.
Ionospheric Assimilation Model for Space Weather Monitoring and Forecasting I. T. Lee 1 W. H. Chen 2, T. Matsuo 3,4, C. H. Chang 2,
University of Colorado/CIRES – NOAA/SWPC NADIR MURI, Boulder, CO, October, 2008 Mariangel Fedrizzi, Timothy J. Fuller-Rowell, Tomoko Matsuo Numerical.
Image credit: NASA Response of the Earth’s environment to solar radiative forcing Ingrid Cnossen British Antarctic Survey.
Electron density profile retrieval from RO data Xin’an Yue, Bill Schreiner  Abel inversion error of Ne  Data Assimilation test.
Implications of Errors in Density Response Time Delay on Satellite Prediction Error Rodney L. Anderson and Christian P. Guignet October 28, 2010, NADIR.
COSMIC Ionospheric measurements Jiuhou Lei NCAR ASP/HAO Research review, Boulder, March 8, 2007.
Effects of January 2010 stratospheric sudden warming in the low-latitude ionosphere L. Goncharenko, A. Coster, W. Rideout, MIT Haystack Observatory, USA.
30 April 2009 Space Weather Workshop 2009 The Challenge of Predicting the Ionosphere: Recent results from CISM. W. Jeffrey Hughes Center for Integrated.
AMS Meeting, January 2008J1.3. Eparvier - 1 EXIS: The Next Generation of Solar EUV and X-Ray Sensors for GOES-R + F.G. Eparvier, T.N. Woods, W. McClintock,
Interminimum Changes in Global Total Electron Content and Neutral Mass Density John Emmert, Sarah McDonald Space Science Division, Naval Research Lab Anthony.
Global and Regional Total Electron Content Anthony Mannucci, Xing Meng, Panagiotis Vergados, Attila Komjathy JPL/Caltech Collaborators: Sarah E. McDonald,
Ionosonde-Based Indices for Improved Representation of Solar Cycle Variation in IRI Steven Brown, Dieter Bilitza Department of Physics and Astronomy, George.
When Lower Atmosphere Waves Invade the Upper Atmosphere
Hiroko Watanabe (Kyoto Univ.)
SECCHI Deputy Program Manager
Thermosphere-Ionosphere Issues for DASI - I:
Prospects for real-time physics-based thermosphere ionosphere models for neutral density specification and forecast Tim Fuller-Rowell, Mariangel Fedrizzi,
Mid-latitude Electron Density Variations Under Magnetospheric Substorm Conditions As Determined From Istanbul Dynasonde Observations Aysegul Ceren MORAL,
TIMED SABER Data Enables Scientists to Derive a 70-year Time Series of the Thermosphere’s Infrared Energy Budget With its long, comprehensive dataset,
Han-Li Liu, Raymond G. Roble, Arthur D. Richmond, Stanley C
Comparisons and simulations of same-day observations of the ionosphere of Mars by radio occultation experiments on Mars Global Surveyor and Mars Express.
Slides for GGR 314, Global Warming Chapter 4: Climate Models and Projected Climatic Change Course taught by Danny Harvey Department of Geography University.
The GOES EUVS Model: New Operational Spectral Irradiances from GOES-R
Alan Burns, Richard Eastes*, Bill McClintock,
The Upper Atmosphere: Problems in Developing Realistic Models
Simulations of the response of the Mars ionosphere to solar flares and solar energetic particle events Paul Withers EGU meeting Vienna,
Evaluation of IRI-2012 by comparison with JASON-1 TEC and incoherent scatter radar observations during the solar minimum period Eun-Young Ji,
Presentation transcript:

1 Effects of solar activity, co-rotating interaction regions, and climate change on thermospheric density during the solar cycle 23/24 minimum Stan Solomon and Liying Qian High Altitude Observatory National Center for Atmospheric Research NADIR Meeting Boulder, Colorado 26 October 2011

Long-Term Satellite Drag Data 2 Global average neutral density at 400 km, 81-day average and annual average (top), and superposed epoch analysis (bottom) Emmert et al., Geophys. Res. Lett., 37, L12102, 2010

Thermospheric Density and F 10.7 at Solar Minimum 3 Global average neutral density at 400 km, 81-day average and annual average (top), F 10.7 Solar Activity Index (bottom) Emmert et al. (2010), Geophys. Res. Lett., 37, L % -4%

Thermospheric Response to Changes in CO 2 4 Range of CO 2 values during past 40 years

Solar EUV Measurements from SOHO Solar EUV Monitor The Solar EUV Monitor (SEM) on the SOHO spacecraft indicates 15% less irradiance in 2008 than in 1996 in the nm wavelength band. Quoted uncertainty is 6%. Didkovsky et al., SOHO-23 Workshop Proceedings, 2010 LASP rocket and TIMED SEE results are consistent with the SEM measurements Uncertainty of ~20%

First Attempt to Model Thermospheric Density 6 Solomon et al. (2010), Geophys. Res. Lett., 37, L16103, doi: /2010GL Preliminary modeling work found reasonable agreement between solar EUV and density measurements. However, questions remain: — Possible degradation of solar measurement? — Role of global thermospheric cooling due to increasing CO 2 levels? — Role of low geomagnetic activity? Global annual average neutral density at 400 km plotted against annual average Solar EUV nm from SOHO/SEM for the ascending (red) and descending (blue) phases of SC 23

Comparison of F 10.7 Index to Mg II Core-to-Wing Ratio 7 MgII data analysis courtesy of Rodney Viereck, NOAA/SWPC

Solar EUV Calculations using the Mg II Core-to-Wing Ratio 8 EUV 10% lower using MgII c/w

Second Attempt to Model Thermospheric Density 9 NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model Temperature and Density simulations at 400 km 2008 simulation includes combined effects of solar EUV decrease, CO 2 increase, and geomagnetic activity changes Solomon et al. (2011), J. Geophys Res., 116, in press, doi: /2011JA

Global Mean Density at 400 km during 1996 and

Comparison of Model Runs to CHAMP Data for

Comparison of Model Runs to CHAMP Data for CR

Model Calculations of Altitude Profiles 13 Measured Density Change [Emmert et al., 2010]

Summary of Model Results 14 Solar EUV Geo- magnetic CO 2 cooling Total change Satellite Drag Data-30% TIE-GCM-22%-2.2%-3%-27% NRLMSISE-00-21%-3.5%n/a-25% Annual average global mean density at 400 km Using MgII c/w to calculate solar EUV and FUV Percentage differences from 1996 to 2008

What about the Ionosphere? 15 TIE-GCM simulations using MgII predict 14% average reduction of NmF2

16

Do Ionospheric Observations Find This Modeled Decrease? 17 Heelis et al., 2009: CINDI measurements indicate that ionosphere is lower and cooler than IRI empirical model during summer Lühr and Xiong, 2010: CHAMP and GRACE measurements indicate lower ionospheric densities than IRI and other models. Coley et al., 2010: Extended the analysis of Heelis et al. Chen et al., 2011: Long-term ionosonde data set shows lower N m F 2 levels during than previous solar minima. Liu et al., 2011: Extended the analysis of Chen et al. Araujo-Pradere et al., 2011: Analyzed ionosonde and total electron content (TEC) measurements, finding mixed results, depending on location, time of year, and especially time of day. BUT... Global average total electron content data sets derived from multi-point GPS measurements do not show this decline...

18 Conclusions The thermosphere/ionosphere system was cooler, less dense, and lower, during the minimum of solar cycle 23/24 than during a “typical” solar minimum. The primary cause of this was lower than “usual” solar EUV irradiance. The Mg II core-to-wing ratio variations are consistent with these observations. Secular change due to increasing CO 2 makes a small but significant contribution. Lower geomagnetic activity during also makes a small but significant contribution. Solomon, S. C., L. Qian, L. V. Didkovsky, R. A. Viereck, and T. N. Woods (2011), Causes of low thermospheric density during the 2007–2009 solar minimum, J. Geophys. Res., 116, A00H07, doi: /2011JA Work in progress extends this modeling effort to possible ionospheric changes.