TileCal Optical Multiplexer Board 9U VME Prototype Cristobal Cuenca Almenar IFIC (Universitat de Valencia-CSIC)

Slides:



Advertisements
Similar presentations
On the development of the final optical multiplexer board prototype for the TileCal experiment V. González Dep. of Electronic Engineering University of.
Advertisements

1 FTK Rear Transition Module Mircea Bogdan The University of Chicago November 11, 2014 Board Review.
ESODAC Study for a new ESO Detector Array Controller.
RoD set-up for the TileCal testbeam, 2003 period. 9th Workshop on Electronics for LHC Experiments Amsterdam, 30 september 2003 Jose Catelo, Cristóbal Cuenca,
The LAr ROD Project and Online Activities Arno Straessner and Alain, Daniel, Annie, Manuel, Imma, Eric, Jean-Pierre,... Journée de réflexion du DPNC Centre.
Uli Schäfer JEM Status and plans Hardware status JEM0 Hardware status JEM1 Plans.
GOLD Generic Opto Link Demonstrator Uli Schäfer 1.
Phase-0 topological processor Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
Level-1 Topology Processor for Phase 0/1 - Hardware Studies and Plans - Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
E.Fullana, J. Torres, J. Castelo Speaker: Jose Castelo IFIC - Universidad de Valencia Tile Calorimeter – ROD Colmar, 11 Sept ROD General Requirements.
RPC Electronics Status Overall system TDC –Digitizing frequency issue (determine the bin size of the TDC value) Discriminator test result Trigger module.
Status of the Optical Multiplexer Board 9U Prototype This poster presents the architecture and the status of the Optical Multiplexer Board (OMB) 9U for.
June 2006Juan A. Valls - FPA Project1 Producción y validación de los RODs Read-Out Driver (ROD)
DSP online algorithms for the ATLAS TileCal Read Out Drivers Cristobal Cuenca Almenar IFIC (University of Valencia-CSIC)
6 June 2002UK/HCAL common issues1 Paul Dauncey Imperial College Outline: UK commitments Trigger issues DAQ issues Readout electronics issues Many more.
Uli Schäfer 1 Production modules Status Plans JEM: Status and plans.
Detector Array Controller Based on First Light First Light PICNIC Array Mux PICNIC Array Mux Image of ESO Messenger Front Page M.Meyer June 05 NGC High.
Uli Schäfer 1 JEM1: Status and plans power Jet Sum R S T U VME CC RM ACE CAN Flash TTC JEM1.0 status JEM1.1 Plans.
Uli Schäfer JEM Status and plans Firmware Hardware status JEM1 Plans.
FDR of the End-cap Muon Trigger Electronics 1/Mar./04 1 Slice Test (SLT) of TGC electronics Introduction Simulation Trigger part SLT Wire Wire and Signal.
Global Trigger H. Bergauer, K. Kastner, S. Kostner, A. Nentchev, B. Neuherz, N. Neumeister, M. Padrta, P. Porth, H. Rohringer, H. Sakulin, J. Strauss,
Emulator System for OTMB Firmware Development for Post-LS1 and Beyond Aysen Tatarinov Texas A&M University US CMS Endcap Muon Collaboration Meeting October.
Status and planning of the CMX Philippe Laurens for the MSU group Level-1 Calorimeter Trigger General Meeting, CERN May 24, 2012.
TID and TS J. William Gu Data Acquisition 1.Trigger distribution scheme 2.TID development 3.TID in test setup 4.TS development.
Trigger Supervisor (TS) J. William Gu Data Acquisition Group 1.TS position in the system 2.First prototype TS 3.TS functions 4.TS test status.
DPNC Yannick FAVRE Electronics Highlights /12/ Electronics Highlights2 Electronics group  3 Engineers  Daniel La Marra  Stéphane Débieux.
LECC 2004 – Boston – September 13 th L.Guiducci – INFN Bologna 1 The Muon Sorter in the CMS Drift Tubes Regional Trigger G.M. Dallavalle, Luigi Guiducci,
1 Design of Pulsar Board Mircea Bogdan (for Pulsar group) Level 2 Pulsar Mini-Review Wednesday, July 24, 2002.
PCIe Mezzanine Carrier Pablo Alvarez BE/CO. Functional Specifications External Interfaces User (application) FPGA System FPGA Memory blocks Mezzanine.
ATLAS SCT/Pixel TIM FDR/PRR 28 July 2004 Firmware - Matt Warren1 Physics & Astronomy HEP Electronics Matthew Warren John Lane, Martin Postranecky TIM Firmware.
Atlas L1Calo CMX Card CMX is upgrade of CMM with higher capacity 1)Inputs from JEM or CPM modules – 40 → 160Mbps (400 signals) 2)Crate CMX to System CMX.
LNL 1 SLOW CONTROLS FOR CMS DRIFT TUBE CHAMBERS M. Bellato, L. Castellani INFN Sezione di Padova.
Evaluation of the Optical Link Card for the Phase II Upgrade of TileCal Detector F. Carrió 1, V. Castillo 2, A. Ferrer 2, V. González 1, E. Higón 2, C.
Status of Global Trigger Global Muon Trigger Sept 2001 Vienna CMS-group presented by A.Taurok.
CPT Week, April 2001Darin Acosta1 Status of the Next Generation CSC Track-Finder D.Acosta University of Florida.
Gueorgui ANTCHEVPrague 3-7 September The TOTEM Front End Driver, its Components and Applications in the TOTEM Experiment G. Antchev a, b, P. Aspell.
SPD Control Board 16th February SPD Control Board (VFE control and SPD multiplicity) VFE’s control (I2C communication: SDA,SCL; clock; reset/trigger.
Global Trigger H. Bergauer, Ch. Deldicque, J. Erö, K. Kastner, S. Kostner, A. Nentchev, B. Neuherz, N. Neumeister, M. Padrta, P. Porth, H. Rohringer, H.
Hardware proposal for the L2  trigger system detailed description of the architecture mechanical considerations components consideration electro-magnetic.
CMX status and plans Yuri Ermoline for the MSU group Level-1 Calorimeter Trigger Joint Meeting CERN, October 2012,
Status and planning of the CMX Wojtek Fedorko for the MSU group TDAQ Week, CERN April , 2012.
FED RAL: Greg Iles5 March The 96 Channel FED Tester What needs to be tested ? Requirements for 96 channel tester ? Baseline design Functionality.
9/25/08J. Lajoie - Muon Trigger Upgrade Review1 Muon Trigger Upgrade LL1 Electronics Iowa State University John Lajoie Cesar Luiz daSilva Todd Kempel Andy.
Upgrade to the Read-Out Driver for ATLAS Silicon Detectors Atlas Wisconsin/LBNL Group John Joseph March 21 st 2007 ATLAS Pixel B-Layer Upgrade Workshop.
Serial Data Link on Advanced TCA Back Plane M. Nomachi and S. Ajimura Osaka University, Japan CAMAC – FASTBUS – VME / Compact PCI What ’ s next?
TALK, LKr readout and the rest… R. Fantechi, G. Lamanna 15/12/2010.
Samuel Silverstein Stockholm University CMM++ firmware development Backplane formats (update) CMM++ firmware.
ERC - Elementary Readout Cell Miguel Ferreira 18 th April 2012
KLM Trigger Status Barrel KLM RPC Front-End Brandon Kunkler, Gerard Visser Belle II Trigger and Data Acquistion Workshop January 17, 2012.
TTC for NA62 Marian Krivda 1), Cristina Lazzeroni 1), Roman Lietava 1)2) 1) University of Birmingham, UK 2) Comenius University, Bratislava, Slovakia 3/1/20101.
Setup, Tests and Results for the ATLAS TileCal Read Out Driver Production J. Alberto Valero Biot IFIC - University of Valencia 12th LECC - September.2006.
M. Adinolfi – University of Oxford – MAPMT Workshop – Imperial College 27 June Status of the PINT chip M. Adinolfi University of Oxford.
1 Status of Validation Board, Selection Board and L0DU Patrick Robbe, LAL Orsay, 19 Dec 2006.
Laboratoire de l’Accélérateur Linéaire (IN2P3-CNRS) Orsay, France Olivier Duarte December th 2009 LHCb upgrade meeting Tests Front-end Status  Necessity.
New digital readout of HFRAMDON neutron counters Proposal Version 2.
October 12th 2005 ICALEPCS 2005D.Charlet The SPECS field bus  Global description  Module description Master Slave Mezzanine  Implementation  Link development.
E. Hazen - DTC1 DAQ / Trigger Card for HCAL SLHC Readout E. Hazen - Boston University.
PC-based L0TP Status Report “on behalf of the Ferrara L0TP Group” Ilaria Neri University of Ferrara and INFN - Italy Ferrara, September 02, 2014.
E. Hazen1 MicroTCA for HCAL and CMS Review / Status E. Hazen - Boston University for the CMS Collaboration.
HO / RPC Trigger Links Optical SLB Review E. Hazen, J. Rohlf, S.X. Wu Boston University.
E. Hazen - CMS Electronics Week
The Jülich Digital Readout System for PANDA Developments
Alberto Valero 17 de Diciembre de 2007
Production Firmware - status Components TOTFED - status
MicroTCA Common Platform For CMS Working Group
ECAL OD Electronic Workshop 7-8/04/2005
Status of the Detector Dependent Unit 2 channel prototype
ATLAS Tile Calorimeter Interface The 8th Workshop on Electronics for LHC Experiments, Colmar, 9-13 September 2002 K. Anderson, A. Gupta, J. Pilcher, H.Sanders,
RPC Front End Electronics
Digitally subtracted pulse between
Presentation transcript:

TileCal Optical Multiplexer Board 9U VME Prototype Cristobal Cuenca Almenar IFIC (Universitat de Valencia-CSIC)

Outline Introduction Previous work OMB 6U Final prototype OMB 9U Schedule for production

ATLAS detector

Optical Multiplexer Board 64 modules x 4 Barrels 2 links out per module with redundant data. Global CRC and DMU CRC. 8 OMBs x 4 crates OMB: 16 In / 8 Out CRC checking VME error counters Data injection to RODs 8 RODs x 4 crates ROD: 8 In/ 2 out Data processing

Outline Introduction Previous work OMB 6U Final prototype OMB 9U Schedule for production

Previous work OMB 6U Specifications  VME 6U Board format  2 input channels (4 input 640 Mbit/s  2 output channels (2 output fibers)  Digital data analysis (CRC computation)  Trigger and Busy inputs

VME_FPGA ALTERA ACEX FPGA EP1K100 VME R/W registers Status/control CRC error registers Provides communication between VME bus and CRC_FPGAs. 2 CRC_FPGAs Altera Cyclone® FPGA Real-time CRC check Internal memory lets us download and inject real events towards the ROD. Event counter generator CRC injection OPTICAL I/O 4 Optical transceivers I/O (Infineon®V23818-K305-L17) 2 Inputs / 1 Output per each CRC_FPGA SERIALIZERS/ DESERIALIZERS 4 receivers (HDMP 1034) 2 transmitters (HDMP1032) The same ones as the I.C.s VME INTERFACE FP connectors LEMO input conectors: Trigger and busy Previous work OMB 6U

ROD production with the OMB 6U Front-End emulation with the OMB 6U. Events injected with CRC Online CRC checking  Total events injected: 13 x 10 9 events  Total events checked: 1,7 x 10 9 events

Outline Introduction Previous work OMB 6U Final prototype OMB 9U Schedule for production

Final prototype OMB 9U Same basic functionality  CRC checking  Data injection  40 MHz clock Differences  8 channels  16 input fibers  8 output fibers  TTCrx  Mezzanine connectors: more processing power?

PCB technical specifications PCB details  Input/output signals designed for operation at 80 MHz Standard 9U VME board size 1272 components 2278 nets  10 copper layers  Signal layers between power/gnd planes  Adjacent layers routed orthogonally for minimum coupling

OMB main components OPTICAL CONNECTORs (Stratos Lightwave) G_LINKS chips (Agilent HDMP1032/34) 8 CRC FPGAs (Altera CYCLONE 324pins) 4 Processing Units slots VME FPGA (Altera CYCLONE 400pins) TTC FPGA & TTCrx (ALTERA ACEX 144pins)

OMB CRC checking 16 Front End inputs. 8 output to ROD Real time CRC checking.  GLOBAL  DMU CRC TTC Information  BCID DMU check Error counters readable from VME.

OMB: ROD injector Data injector to RODs.  Actual data  Autogenerated data. Trigger:  External source.  TTC information

OMB: Processing Units Upgrade 4 Processing Units. Compatible with ROD PUs. Pre-processing of front end data.

Outline Introduction Previous work OMB 6U Final prototype OMB 9U Schedule for production

Schedule First prototype validated. Currently producing the second prototype with minor changes Software and firmware adaptation from 6U board. Production of 38 boards during the summer. Installation in the ATLAS cavern at the end of the year.

Backup slides

Final prototype OMB 9U

Signal integrity issues  Big area, not too much populated  Long distance traces (high coupling)  Clock distribution  JTAG chain distribution  VME-CRC FPGA serial bus  Different voltage supplies  +3.3 Volt for FPGA I/O and some logic  +1.5 Volt for FPGA cores (island)  +5 Volt for logic  +12 Volt for NIM/TTL conversion (ext. trigger input)

Final prototype OMB 9U Example of SI analysis: VME to CRC serial BUS  Connected between the VME FPGA and all CRC FPGAs  For control, communication, configuration, etc.  4 lines: CLK, DATA0, DATA1, DATA2, DATA3  Frequency of operation 40 MHz

Final prototype OMB 9U First attempt  Manual placement and routing of bus lines  Keep stubs short  Keep same routing layer as much as possible  R, RC termination Problem  Characteristic impedance change at T junction  Reflections at first FPGA creates InterSymbol Interference (ISI)

Final prototype OMB 9U PostLayout simulation

Final prototype OMB 9U Second attempt  Manual placement and routing of bus lines  Keep stubs short  Keep same routing layer as much as possible Problem  Reflections with different termination schemes

Final prototype OMB 9U PostLayout simulation

Final prototype OMB 9U Final attempt  Manual placement and routing of bus lines  Keep stubs short  Keep same routing layer as much as possible Solution  Resistive termination at both ends

Final prototype OMB 9U PostLayout simulation