分散式系統 Pervasive Computing 台灣大學 _EMBA 資訊管理研究所 九十二學年度第一學期 指導教授:莊裕澤 教授 學生:沈富濤、江世祺、黃錫煙.

Slides:



Advertisements
Similar presentations
Pervasive Computing Parts of the slides are extracted from those of Profs. Mark Weiser, Deborah Estrin, Akbar Sayeed, Jack Stankovic, Mani Srivastava,
Advertisements

Pervasive Computing 通訊所 鄭筱親. Outline  Introduction  Context Awareness  Recent Research  Future and Conclusion.
資料蒐集的方法(三):實驗法(實驗設計) (第七章)
網際網路資料庫連結 2004 Php Web Programming. 上完這段課程,你將學會  一般靜態網頁與互動式網頁的區別。  網際網路上大量資料的存取。  資料庫的角色與功能。  Web Server 的角色與功能。  網際網路資料庫的應用。  基本的程式寫作技巧及網頁的應用。
Software Engineering for Digital Home 單元 2 :軟體處理程序與需求分析 2-3 需求工程處理程序 Presenter: Away.
建立使用案例敘述 --Use Case Narrative
空間中有景物 第一組 B 陳思 廷 B 陳湘 惠. 內容大綱 1. 什麼是空間 ? 2. 什麼是景物 ? 3. 問題 - 什麼是空間中有景物 ? 4. 什麼樣類型的空間需要放置景物 ? 5. 設計原則 6. 研究結論 7. 參考文獻.
指導教授:應鳴雄 老師 組長: B 鄧光宏 組員: B 莊禮仲 B 陳品諺 B 林于迪 古弗瑞德交友網站系統 中華大學資訊管理學系九十九學年專題報告 1.
校園線上技術服務之使用意圖與 建置成功因素的研究 2011/04/22 淡江大學 資管所碩二 李依倫 鄭佳容.
Forum 2004 Building and Plaza Herzog & de Meuron Barcelona, Spain Pic 1.
核心能力意見調查 計畫主持人:劉義周教授 研究助理: 林珮婷 報告日期: 調查案的目標與性質 調查的主要目的在進行宣傳,讓全校師生可以瞭 解何謂「課程地圖」與「核心能力」。 通識中心將核心能力主要區分為「學術訓練」、 「就業準備」、「公民文化養成」、「個人特質 提升」等四大面向,本調查依據此四大面向進一.
NCCU System 學校信箱. Let’s start from here: 從首頁的信箱入口進入.
Chapter 0 Computer Science (CS) 計算機概論 教學目標 瞭解現代電腦系統之發展歷程 瞭解電腦之元件、功能及組織架構 瞭解電腦如何表示資料及其處理方式 學習運用電腦來解決問題 認知成為一位電子資訊人才所需之基本條 件 認知進階電子資訊之相關領域.
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
1 實驗二 : SIP User Mobility 實驗目的 藉由 Registra 和 Redirect Server 的設計,深入瞭解 SIP 的運 作及訊息格式。 實作部分 ( 1 )實作一個 Registrar 來接收 SIP REGISTER ,而且 要將 REGISTER 中 Contact.
1.1 電腦的特性 電腦能夠快速處理資料:電腦可在一秒內處理數百萬個 基本運算,這是人腦所不能做到的。原本人腦一天的工 作量,交給電腦可能僅需幾分鐘的時間就處理完畢。 電腦能夠快速處理資料:電腦可在一秒內處理數百萬個 基本運算,這是人腦所不能做到的。原本人腦一天的工 作量,交給電腦可能僅需幾分鐘的時間就處理完畢。
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
請問 : 科技融入教學再你的心目中只是一 個不同於其他教學法的選擇 (optional choice) ? 或是一個必要的需要 (demanding needs)?
1 網路同步學習 如何使用中山大學管理學院知識管理平台 愷中 製作. 2 如何登入中山大學網路學習平台 1. 首先, 請輸入 2. 點選申請帳號, 依照螢幕所示, 輸入個人資訊.
資料處理 汪群超 2 這一年將學習到什麼? 網際網路:你在哪裡?瞭解你的角色、駕馭網路 。 Web 、 FTP 、 、 Proxy 、 Database Servers 記錄你的學習歷程、展現學習成果: Homepage 、 PowerPoint.
第 1 章 PC 的基本構造. 本章提要 PC 系統簡介 80x86 系列 CPU 及其暫存器群 記憶體: Memory 80x86 的分節式記憶體管理 80x86 的 I/O 結構 學習組合語言的基本工具.
Keynote Talk Ubiquitous Computing 無間資訊空間 主講 : 吳其彥 教授.
Wireless Protocol Bluetooth
Pervasive Computing Parts of the slides are extracted from those of Profs. Mark Weiser, Deborah Estrin, Akbar Sayeed, Jack Stankovic, Mani Srivastava,
資源整合查詢系統. (2) 找尋資料時面臨的問題 1. 如何取得檢索結果的全文或相關資料 ? Ex: GoogleScholar, ISI SCI? 2. 如何看到參考文獻 (Citation, Reference) 的全文 ? 3. 該從那個資料庫開始查 ? 4. 如何分類儲存查詢結果 ? 5.
第三部分:研究設計 ( 二): 研究工具的信效度 與研究效度 (第九章之第 306 頁 -308 頁;第四章)
最新計算機概論 第 5 章 系統程式. 5-1 系統程式的類型 作業系統 (OS) : 介於電腦硬體與 應用軟體之間的 程式,除了提供 執行應用軟體的 環境,還負責分 配系統資源。
3-3 使用幾何繪圖工具 Flash 的幾何繪圖工具包括線段工具 (Line Tool) 、橢圓形工具 (Oval Tool) 、多邊星形 工具 (Rectangle Tool) 3 種。這些工具畫出 來的幾何圖形包括了筆畫線條和填色區域, 將它們適當地組合加上有技巧地變形與配 色, 不但比鉛筆工具簡單,
CS1103 電機資訊工程實習 Department of Computer Science National Tsing Hua University.
8-1 Chapter 8 技術與流程 組織的技術 製造業的核心技術 服務業的核心技術 非核心技術與組織管理 工作流程的相依性.
Ubiquitous News(Unews) 的設計與實作 指導教授:黃毅然 教授 學生:葉雅琳 系別:資訊工程學系.
ISA5428: 普及計算 Pervasive Computing Course Outline 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期 (Slides are taken from the presentations by Prof. Friedemann Mattern of.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 參 資料蒐集的方法.
© The McGraw-Hill Companies, Inc., 2006© The McGraw-Hill Companies, Inc., 2007 Chapter 3 底層技術.
1 透過 IT 電子商務和知識管 理應用之探討 指導老師:李富民 教授 報告者:許志傑 學號: 職 1A 報告日期 :97/01/14.
教材名稱:網際網路安全之技術及其應用 (編號: 41 ) 計畫主持人:胡毓忠 副教授 聯絡電話: 教材網址: 執行單位: 政治大學資訊科學系.
手機模擬機車事故黑盒子 指導教授 : 姚修慎 教授 李易璋 鍾明哲 黃靖宇.
6-2 認識元件庫與內建元件庫 Flash 的元件庫分兩種, 一種是每個動畫專 屬的元件庫 (Library) ;另一種則是內建元 件庫 (Common Libraries), 兩者皆可透過 『視窗』功能表來開啟, 以下即為您說明。
CHAPTER 9 電腦 林麗娟‧教學媒體與操作. The Role of Computer for Learning  區別電腦輔助教學 (Computer –Assisted Instruction, CAI) 與電腦管理教學 (Computer – Managed Instruction,
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
Pervasive Computing Parts of the slides are extracted from those of Profs. Mark Weiser, Deborah Estrin, Akbar Sayeed, Jack Stankovic, Mani Srivastava,
Image Interpolation Use SSE 指導教授 : 楊士萱 學 生 : 楊宗峰 日 期 :
JAVA 程式設計與資料結構 第二十章 Searching. Sequential Searching Sequential Searching 是最簡單的一種搜尋法,此演 算法可應用在 Array 或是 Linked List 此等資料結構。 Sequential Searching 的 worst-case.
逆向選擇和市場失調. 定義  資料不對稱 在交易其中,其中一方較對方有多些資料。  逆向選擇 出現在這個情況下,就是當買賣雙方隨意在 市場上交易,與比較主動交易者作交易為佳 。
大華技術學院九十五學年度 資工系計算機概論教學大綱 吳弘翔. Wu Hung-Hsiang2 科目名稱:計算機概論與實習 授課老師:吳弘翔 學分數: 4 修別:必修 老師信箱:
寬頻通訊系統基礎教育計畫 分項計畫二 寬頻網路通訊 主要參與人員 黎碧煌 教 授 鍾順平 副教授
Open Services Gateway Initiative (OSGi) Service Platform 1 OSGi Architecture.
Chapter 10 m-way 搜尋樹與B-Tree
網路介紹及其運用 講師陳炯勳. 5-2 IP 協定 ( 一 ) IP 協定運作 (1) – 網路成員:主機 (Host) 與路由器 (Router) – 路由表 – 電報傳輸運作.
概念性產品企劃書 呂學儒 李政翰.
無線通訊網路 Mac 層 TDM 通訊模式的操作與效能研究 專題生 : 林書弘、蔡逸祥、毛建翔、王政 華 指導教授 : 黃依賢.
Outline The Vision -- According to Mark Weiser The Enablers
國立清華大學資訊工程學系 資訊工程系 2009/11/03P-1 Quiz & Solution 09810CS_ Computer Systems & Application Fall.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 壹 企業研究導論.
指導教授 : 林啟芳 教授 組員 : 邱秉良 林育賢. 何謂 GPS  GPS 即全球定位系統,是一個中距離圓 型軌道衛星導航系統。它可以為地球表面 絕大部分地區( 98% )提供準確的定位、 測速和高精度的時間標準。
1 高等管理資訊系統. 2 授課教師 : 王耀德 研究室 : 主顧 686 電話 : (04) # 課輔時間 Wednesday 09:00~13:00 介紹.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 參 資料蒐集的方法.
二十一世紀數位化公務員應具備數位化基 本能力 一 應了解每日數位媒體所提供的日常數位 資訊的常識(乃至知識)及常使用的標準 化技能 二 搜尋與公務相關的資訊,相關工作資料 庫的能力 三 快速中文輸入的能力.
IEEE Computer Society 長亨文化事業有限公司. 大綱 學會背景 內容 查詢功能.
第 1 章 PC 的基本構造. 本章提要 PC 系統簡介 80x86 系列 CPU 及其暫存器群 記憶體: Memory 80x86 的分節式記憶體管理 80x86 的 I/O 結構 學習組合語言的基本工具.
Using technology wisely In p.3, the author mentioned Papert, and Suppes both saw it (the computer) as a replacement for teachers. Do you agree it with.
Jan 11, 2001CSCI {4,6}900: Ubiquitous Computing1 Announcements Class participation is very important. You will be graded on your involvement in class discussions.
Mobile and Pervasive Computing - 5 Pervasive Computing -Now and Next
Exploring Mediation Between Environmental and Structural Attributes: The Penetration of Communication Technologies in Manufacturing Organizations 陳志凡
Trends in Embedded Computing The Ubiquitous Computing through Sensor Swarms.
控制與訊號處理實驗室成果簡介 指導教授 陳博現教授 本實驗室研究主題主要分為三類:第一類為非線性隨機控制及量子系統 控制應用。第二類是訊號處理及無線通訊應用。第三類是整合訊號及控制 在系統生物學及生物資訊的應用。相關研究成果分類介紹如下: 一、非線性隨機控制設計及量子系統追蹤控制 :( 最近成果及目前進行研究.
Internet Technology Laboratory Department of Computer and Communication Kun Shan University  官方網站:
Pervasive Computing Parts of the slides are extracted from those of Profs. Mark Weiser, Deborah Estrin, Akbar Sayeed, Jack Stankovic, Mani Srivastava,
節能轉接插座 認知科學研究所陳啟彰. 設計緣起 不使用的電器如未將插頭拔除, 仍會有少量的電力損耗,這類的 電力損耗稱之為待機損耗 (stand- by loss) 。 不使用的電器如未將插頭拔除, 仍會有少量的電力損耗,這類的 電力損耗稱之為待機損耗 (stand- by loss) 。 家庭用電中,待機損耗約佔總耗.
Ubiquitous Computing By: Patrick Yienger.
Presentation transcript:

分散式系統 Pervasive Computing 台灣大學 _EMBA 資訊管理研究所 九十二學年度第一學期 指導教授:莊裕澤 教授 學生:沈富濤、江世祺、黃錫煙

是一般性電腦運算的拓展,可創 造無所不在的計算環境,包括各 種移動設備,如汽車、手機、 PDA 等智慧型裝置 Pervasive Computing 普及運算

甚至可以應用至家電設備,如電 視機、電冰箱,甚至是販賣機、 公共電話與網路住宅。這些裝置 本身都具備簡單運算的能力,同 時與網路、內部網路或是無線網 路( Wireless )連接,讓使用者 可隨時隨地獲取資訊。 Pervasive Computing 普及運算

設備的核心系統都是計算機處理 器,多數以小型的嵌入式系統方 式存在,而不像桌上型的電腦或 是筆記電腦。 Pervasive Computing 普及運算

在這種情況下,有運算功能的設 備基本上是可以無所不在,且滲 透至人們的日常生活的各種層面 當中;而當所有的設備都可連結 網路,資訊的取得將更為容易。 這些互相鏈結的設備所構築出的 應用環境,基本上就稱為普及運 算。 Pervasive Computing 普及運算

普及運算的應用目標是 「任何時間、任何地點、任何設備」 ( anytime 、 anywhere 、 any devices ) 輕鬆取得資訊且能進行回應。 Pervasive Computing 普及運算

Pervasive Computing Outline  The Vision  The Enablers  Example Projects  Summary (Slides are taken from the presentations by Prof. Friedemann Mattern of ETH Zurich &Chung-Ta King, Professor of CS NTHU )

Ubiquitous Computing The Ubiquitous Computing, - offers information on the age of calm technology (calm computing), 以人為中心, 迎合人的習性 - 融入日常生活與使用工具當中 - 自主與使用者產生互動  Mark Weiser (July,23,1952 –April,27,1999), Chief technologist at XEROX Palo Alto Research Center.  Paper “The Computer for the 21 st Century”, 1991.

Vision of PvC  Visions  Everything, always, everywhere  All objects becomes smart (Communication)  Everything is connected to the Internet  Become true because of  Cheaper hardware  Smaller hardware  Wireless communication almost no cost

Goals of PvC  Integration of virtual and physical worlds  Invisible technology  Throughout desks, rooms, buildings, and life  Take the data out of information, leaving behind just an enhanced ability to act

Computing: The Trend One computer for many people One computer for each person Many computers for each person Size Number

As the Trend Goes.. Dust can compute and communicate! Size Number 請掃床底下, 我們有三吋 厚了! “Smart” Dust

When Everything Smart.. and Communicating Computing Becomes Ubiquitous!

Phase I  Phase I  Smart, I/O devices everywhere: tabs, pads, and boards  Hundreds of computers per person, but casual, low-intensity use  Many, many “displays”: audio, visual, environmental  Wireless networks  Location-based, context-aware services  Interesting scenarios  Using a computer should be as refreshing as a walk in the woods

Requirements  Things must be smart …  small, cheap, lightweight, mobile processors, with sensors, actuators, and networking, with display…  in almost all everyday objects(embedded computing) , including on our body (“wearable computing”)  Embedded in the environment(ambient intelligence)  and connected …  wireless, most probably through the Internet  to form a smart space/environment  Low power  and is linked to the cyberspace  access to virtual world, virtual counterpart, augmented reality

I/O Devices  Post-it note-sized palmtop computers  One hundred per person per office  Always have one on you, wirelessly connected  Small touch-sensitive display screen  Scatter around the office like post-it notes  Notebook-sized computers  Ten per person per office  Stylus-based input primary  Near megabit wireless communication bandwidth  Can support multimedia when “tethered”

I/O Devices (cont.)  Wall displays  Large ones used as shared display surfaces (replaces whiteboards)  Replace physical bulletin boards, etc.  Lots of bandwidth available because they’re plugged into the wall

The Disappearing Computer “ In the 21st century the technology revolution will move into the everyday, the small and the invisible…” “The most profound technologies are those that disappear. They weave themselves into the fabrics of everyday life until they are indistinguishable from it.”  Mark Weiser (July,23,1952 –April,27,1999), Chief technologist at XEROX Palo Alto Research Center.

A people-friendly Vision: Computing without Computers  Invisible, embedded processors support us when dealing with the real objects  Bring the computer to the world, not the world into the computer  Concentrate on the task, not the tool  New picture of computing  The notion “computer as a tool” does no longer hold.  Instead: an invisible, ubiquitous background assistance.

A people-friendly Vision: Computing without Computers  “Invisible” stays out of the way of task  Like a good pencil stays out of the way of the writing  Like a good car stays out of the way of the driving  Bad technology draws attention to itself, not task  Like a broken, or skipping, or dull pencil  Like a car that needs a tune-up  Computers are mostly not invisible  They dominate interaction with them  Ubiquitous computing is about “invisible computers”

A people-friendly Vision: Computing without Computers  The most powerful technologies are invisible: they get out of the way to let human be effective  Electricity  Electric motors hidden everywhere (20-30 per car)  Electric sockets in every wall and portably available through batteries  Integrated, invisible infrastructure

How to Do Invisible Computing?  Integrated computer systems approach  Invisible, everywhere, computing named “ubiquitous computing” in April 1989  Invisible: tiny, embedded, attachable, …  Everywhere: wireless, dynamically configurable, remote access, adapting, …

Making Things Smart  Smart devices: Computer: Portable, wearable

Smart Objects  Real world objects are enriched with information processing capabilities  Embedded processors  in everyday objects  small, cheap, lightweight  Communication capability  wired or wireless  spontaneous networking and interaction  Sensors and actuators

Smart Objects (cont.)  Can remember pertinent events  They have a memory  Show context-sensitive behavior  They may have sensors  Location/situation/context awareness  Are responsive/proactive  Communicate with environment  Networked with other smart objects

Smart Objects (cont.)

Is this what we really want?

Pervasive Computing Outline  The Vision  The Enablers  Example Projects  Summary

First Enabler: Moore‘s Law  Processing speed and storage capacity double every 18 months  “cheaper, smaller, faster”  Exponential increase  will probably go on for the next 10 years at same rate

Generalized Moore’s Law  Most important technology parameters double every 1–3 years:  computation cycles  memory, magnetic disks  bandwidth  Consequence:  scaling down Problems: increasing cost energy

2nd Enabler: Communication  Bandwidth of single fibers ~10 Gb/s  2002: ~20 Tb/s with wavelength multiplex (often at no cost for laying new cable!)  Powerline  coffee maker “automatically” connected to the Internet  Wireless  mobile phone: GSM, GPRS, 3G  wireless LAN (> 10 Mb/s)  Bluetooth  Room networks, body area networks  Internet-on-a-chip

Ubiquitous Information PAN: Personal area network

Body Area Networks  Very low current (some nA), some kb/s through the human body  Possible applications:  Car recognize driver  Pay when touching the door of a bus  Phone configures itself when it is touched

Spontaneous Networking  Objects in an open, distributed, dynamic world find each other and form a transitory community  Devices recognize that they “belong together”

3rd Enabler: New Materials  Important: whole eras named after materials  e.g., “Stone Age”, “1st generation computers”  More recently: semiconductors, fibers  information and communication technologies  Organic semiconductors  change the external appearance of computers  “Plastic” laser  Optoelectronics, flexible displays,… ...

Smart Paper, Electronic Ink  Electronic ink  micro capsules, white on one side and black on the other  oriented by electrical field  substrate could be an array of plastic transistors  Potentially high contrast, low energy, flexible  Interactive: writable with magnetic pen

Interactive Map  Foldable and rollable You are here!

Smart Clothing  Conductive textiles and inks  print electrically active patterns directly onto fabrics  Sensors based on fabric  e.g., monitor pulse, blood pressure, body temperature  Invisible collar microphones  Kids wear  game console on the sleeve?  integrated GPS-driven locators?  integrated small cameras (to keep the parents calm)?

Smart Glasses  By 2009, computers will disappear. Visual information will be written directly onto our retinas by devices in our eyeglasses and contact lenses -- Raymond Kurzweil

Today’s Wearable Computer ready to ware

Wearable Concept (Motorola)

4th Enabler: Sensors/Actuators  Miniaturized cameras, microphones,...  Fingerprint sensor  Radio sensors  RFID  Infrared  Location sensors  e.g., GPS ...

Example: Radio Sensors  No external power supply  energy from the actuation process  piezoelectric and pyroelectric materials transform changes in pressure or temperature into energy  RF signal is transmitted via an antenna (20 m distance)  Applications: temperature surveillance, remote control (e.g., wireless light switch),...

RFIDs (“Smart Labels”)  Identify objects from distance  small IC with RF-transponder  Wireless energy supply  ~1m  magnetic field (induction)  ROM or EEPROM (writeable)  ~100 Byte  Cost ~$ $1  consumable and disposable  Flexible tags  laminated with paper

 PDAs, mobile phones, and wireless Internet appliances become request devices for information  find information  order products ... Bar Code Reader

Lego Making Lego Smart: Robot command Explorer (Hitachi H8 CPU, 32KB RAM, IR)

Lego Mindstorms

Putting Them Altogether  Progress in  computing speed  communication bandwidth  material sciences  sensor techniques  computer science concepts  miniaturization  energy and battery  display technologies ...  Enables new applications  “Post-PC era” business opportunities  Challenges for computer scientists, e.g., infrastructure

Issues To Be Solved  User Intent & Context Awareness  Cyber Foraging  Adaptation Strategy  Significant mismatch between the supply and demand of a resource  High Level Energy Management  Privacy & Trust

Pervasive Computing Outline  The Vision  The Enablers  Example Projects  Summary

Idea: Making Objects Smart  The Smart Its Project  Vision: make everyday objects as smart, interconnected information artifacts  by attaching “Smart-Its”  Smart labels  Atmel microcontroller: (ETH Zurich) 4 MIPS, 128 kB flash

“Smart-Its Friends”  How do we establish that two objects “belong together”?  Hold them together and shake!

“Smart-Its Friends”!  After the shared context has been established, the two devices can open a direct communication link to exchange application-specific data

Idea: Virtual Counterparts Real World Virtual World (Internet, cyberspace) Pure virtual objects (e.g., every object has a web server)

Ex.: As Artifact Memories  Updates triggered by events  Queries from the real world return memory content  Sensors generate events

Magnifying Glass  An object as a web link  e.g., by displaying a dynamically generated homepage  Contents may depend on circumstances, e.g., context and privileges  possibly mediated by different name resolvers  HP Cooltown project

CueCat & Its Business Models  Bar code scanner  LED based  Attached to computer via keyboard port  Scanners distributed free  $5-$10 per CueCat  Sends the Web browser directly to “right” location when scanning the bar code of an ad in a magazine

Other Applications  Physical browsing (physical entity as an icon or URL link to web pages)  Physical objects as content repositories (by associating objects with content)  Copy-and-paste in the real world  Objects as communication points (by communicating content between two persons)  Objects as physical representation of virtual state, mixed reality, smart environment

AT&T Sentient System Timeline-based context storage Location tracking Position monitoring

MIT Oxygen Project

Berkeley’s Wireless Sensor Network  MICA Motes, sensors, and TinyOS:

OceanStore: Motivation  Are data just out there?  OceanStore: An architecture for global-scale persistent storage

Pervasive Computing Outline  The Vision  The Enablers  Example Projects  Summary

Other Opportunities  New digitally enhanced products  e.g., cooperating toys, air conditioner,...  New services (“e-utilities”)  e.g., management of smart devices at home, management of personal privacy,...  Detailed and timely knowledge of product location and life cycles, individual and dynamic prices for goods,...  e.g., milk bottle reduces its price with its age  e.g., higher taxes if product transported by plane

Consequences  Indistinguishable and more tightly integrated physical and virtual worlds  Scarcest resource: human attention

Ubicomp is Situated Computing  Makes use of simple shared context  Space  Time  Proximity  Participation in the context  is physical  is out here with us  Is in many small and large places, including trivial ones

New Science from Exploring Ubicomp  Theoretical computer science: network security, caching over slow networks, …  Operating systems: scalable to wristwatches, user-extensible O.S.’s, reliable without redundancy, low power O.S.  User interfaces, hardware and software gestures, two-handed input, pie-menus, unistroke alphabets  Networking, hardware and software: radio, infrared, mobile protocols, in-building wireless LANs, over varying bandwidth  Computer architecture, hardware and software: post-it-note computers, low power O.S., multimedia pad computers

Summary  Pervasive computing emphasizes metaphors of life, interaction with other people, invisibility, and is leading to new discoveries in computer science “ Using a computer should be as refreshing as taking a walk in the woods.”