New Technologies - Software Radios. An Easy Definition A software-defined radio (SDR) system is a radio communication system which uses software for the.

Slides:



Advertisements
Similar presentations
Introduction to Telecommunications by Gokhale WIRELESS COMMUNICATIONS
Advertisements

Radio over Internet Protocol
Mass Market Wireless Multimedia The Chipset Challenge of Smaller, Faster, Cheaper… Tom Pollard Worldwide Chipset Marketing Director Texas Instruments Incorporated.
How are we going to get there? Perry Correll Xirrus, Principal Technologist How will White Spaces impact the consumer market?
Tri-Band RF Transceivers for Dynamic Spectrum Access By Nishant Kumar and Yu-Dong Yao.
Overview and Basics of Software Defined Radios INSTRUCTOR: Dr. George Collins By Praveen Kumar Chukka
GNU Radio A Free Software Defined Radio Eric Blossom Blossom Research Lighthouse Ave., Suite 109 Monterey, CA USA.
Transmission technology William Kemp. Infrared Infrared data travels in shorter (near infrared waves). These waves enable data to be sent and receive.
Overview.  UMTS (Universal Mobile Telecommunication System) the third generation mobile communication systems.
Software Defined Radio
RF Considerations for wireless communications Jose Antonio Echenique.
Sep 08, 2005CS477: Analog and Digital Communications1 Example Systems, Signals Analog and Digital Communications Autumn
IT-101 Section 001 Lecture #15 Introduction to Information Technology.
SAMEER NETAM RAHUL GUPTA PAWAN KUMAR SINGH ONKAR BAGHEL OM PANKAJ EKKA Submitted By:
National Science Foundation Symposium Ed Thomas Chief, Office of Engineering and Technology Federal Communications Commission.
1 Summary of SDR Analog radio systems are being replaced by digital radio systems for various radio applications. SDR technology aims to take advantage.
© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. © The McGraw-Hill Companies, Inc. Wireless Network Technologies Asst. Prof.
SIM-201 Satellite Telephony Radio Frequency Satellites and Orbits GPS.
- 1 - A Powerful Dual-mode IP core for a/b Wireless LANs.
Communications & Networks
6-1 Extranet Uses. 6-2 Case 2: Maryland and Colorado Serving their customers without using wires Earth Alert Emergency Management System in Maryland provides.
IT in Business Enterprise and Personal Communications Networks Lecture – 07.
DECT Data Applications Contents DECT Data Application Scenarios DECT Data Interoperability DECT Data Standards DECT Data Trends Conclusions.
Bilal Saqib. Courtesy: Northrop Grumman Corporation.
Succeeding with Technology Telecom, Wireless & Networks Fundamentals Media, Devices, and Software Wireless Telecommunications Networks and Distributed.
Software Defined Radios The future of wireless technology By Zac Lessard.
Multimedia & Communications ATMEL Bluetooth Background information on Bluetooth technology ATMEL implementation of Bluetooth spec.
COMMUNICATION SYSTEM (2) CT1401 LECTURE-9 : MOBILE PHONE BY : AFNAN ALAYYASH SUPERVISION : DR.OUIEM BCHIR.
Communication systems Dr. Bahawodin Baha School of Engineering University of Brighton, UK July 2007.
Chapter 1 Introduction to Computer Networks and Data Communications Data Communications and Computer Networks: A Business User’s Approach.
WiMAX, meaning Worldwide Interoperability for Microwave Access Emerging technology that provides wireless transmission of data using a variety of transmission.
Munawwar M. Sohul Dr. Taeyoung Yang Dr. Jeffrey H. Reed a
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
1 Software Radio Enabling Dynamic Spectrum Management.
Guided by: Jenela Prajapati Presented by: (08bec039) Nikhlesh khatra.
Copyright © 2008 Vanu, Inc. 1 Software Radio Infrastructure Solutions for Caribbean Carriers Rob Anglin COO Vanu, Inc. July 16, 2008.
1 Software Radio Technology Dr. John Chapin CTO Vanu, Inc. One Porter Square, Suite 18 Cambridge, MA Presentation to NSMA conference.
45 nm transistor 45nm =.045um (microns)= 450 Angstroms.
Data and Computer Communications Circuit Switching and Packet Switching.
COST289 14th MCM Towards Cognitive Communications 13 April Towards Cognitive Communications A COST Action Proposal Mehmet Safak.
Cognitive Radio Networks
DSP Techniques for Software Radio Introduction Dr. Jamil Ahmad.
SW and HW platforms for development of SDR systems SW: Model-Based Design and SDR HW: Concept of Modular Design and Solutions Fabio Ancona Sundance Italia.
Networks.
MASNET GroupXiuzhen ChengFeb 8, 2006 Terms and Concepts Behind Wireless Communications.
Information Technology Needs and Trends in the Electric Power Business Mladen Kezunovic Texas A&M University PS ERC Industrial Advisory Board Meeting December.
William Stallings Data and Computer Communications
Team Topic Presentation Team 6 BLUETOOTH What is Bluetooth? Cable Replacement Automatic Connectivity Hidden Computing Few Examples: 1.Automatic Door.
Cognitive Radio: Next Generation Communication System
Software Defined Radio Libin Benedict S7 IT Roll No.9.
Static Spectrum Allocation
June, 1999©Vanu, Inc. Vanu Bose Vanu, Inc. Programming the Physical Layer in Wireless Networks.
Wireless Communications Outline Introduction History System Overview Signals and Propagation Noise and Fading Modulation Multiple Access Design of Cellular.
CDMA X EV-DO by S.Vidhya. CDMA 2000 CDMA2000 (also known as C2K or IMT Multi ‑ Carrier (IMT ‑ MC)) is a family of 3G[1] mobile technology standards,
WHY WIRELESS COMMUNICATION?  Freedom from wires.  No bunch of wires running from here and there.  “Auto Magical” instantaneous communication without.
Exploring the World of Wireless James Taylor - COSC 352 Fall 2007.
SOFTWARE DEFINED RADIO
EDGE TECHNOLOGY AN EVOLUTION IN MOBILE TECHNOLOGY PRESENTED BY KIRAN KUMAR.
IT-101 Section 001 Lecture #15 Introduction to Information Technology.
Software Defined Radios The future of wireless technology By Zac Lessard.
Personal Communication Services & WiFi
5G Wireless Technology.
(Worldwide Interoperability for Microwave Access)
Cellular Networks Part 2
4G-WIRELESS NETWORKS PREPARED BY: PARTH LATHIGARA(07BEC037)
Wireless Fidelity 1 1.
GNU Radio A Free Software Defined Radio
Seminar on…. 5G Wireless Technology By: Niki Upadhyay
expanded by Jozef Goetz, 2014 The McGraw-Hill Companies, Inc., 2007
Wireless Wide Area Networks
Presentation transcript:

New Technologies - Software Radios

An Easy Definition A software-defined radio (SDR) system is a radio communication system which uses software for the modulation and demodulation of radio signals. (Wikipedia)

The Industry Definition A software radio is a wireless communications device in which all of the signal processing is implemented in software. By simply downloading a new program, a software radio is able to interoperate with different wireless protocols, incorporate new services, and upgrade to new standards. (An Introduction to Software Radio, Vanu Inc.)

Technical Definition. Software defined radios are elements of a wireless network whose operational modes and parameters can be changed or augmented, post-manufacturing, via software. Software defined radios are a collection of hardware and software technologies that enable reconfigurable system architectures for wireless networks and user terminals. (Software Defined Radio Forum, “Overview and Definition of Software Download for RF Reconfiguration”, Aug 2002,

Regulatory Definition A radio that includes a transmitter in which the operating parameters of frequency range, modulation type or maximum output power (either radiated or conducted) can be altered by making a change in software without making any changes to hardware components that effect the radio frequency emissions. (US, Federal Communications Commission, First Report And Order, “Authorization and Use of Software Defined Radios”, Sep 2001, )

Keywords Modulation, Demodulation – Signal Processing in software. Interoperability between different wireless protocols, different frequencies. Upgradeable and reconfigurable via software

What are we looking for: Software Architecture Reconfigurable Generic Hardware Flexible Multiple Protocols Upgradeable Multiple Frequencies Interoperable

Wireless Devices in Use Cell Phone – GSM, CDMA etc. Cordless Phone Wireless PDA Wireless device Pager GPS navigation system Car Phones Ham radios FM Radios Walkie-Talkies

Need for Software Radios Scenario 1: Communication required between personnel from different departments of Public Safety and Emergency Services at a disaster recovery area. Police – use 800 MHz 2-way analog radio Firefighters – use Digital VHF band radios Problem: Incompatibility between communication devices Solution: Bring in thousands of new radio devices and distribute to all departments? Better Solution: Software patch – download a patch and reconfigure all radios to communicate with each other.

Need for Software Radios Scenario 2: Commercial wireless network standards continuously evolving from 2G to 2.5G/3G and then further onto 4G. Significant difference in link-layer protocol standards. Cellular Service Provider – needs to upgrade to new technology. Problem: Customer base using 2G. As need for data services arises among customers – provider needs to upgrade to 2.5 or 3 G. Solution : Providers -Spend millions and billions to replace expensive equipment. Subscribers – buy new handsets. Better solution : Software upgrade – software changed to upgrade from old to new technology.

Need for Software Radios Scenario 3: A day in the life of an ordinary individual – cell phone, cordless phone, pager, internet enabled PDA, Navigation System in car, TV Remote, Music System remote, FM Radio, Garage Door opener. So many wireless devices !!!!! A single Software radio device could Act as a cell phone when he is traveling. Switch to performing as a cordless phone from his office desk. Accept GPS (global positioning system) signals in his car. Act as a wireless Internet device to download . Act as a garage-door opener when the user gets home.

Brief History SDR technology was first demonstrated in a Department of Defense project in SpeakEasy Phase I –2 MHz to 2 GHz –Ground force radios (frequency-agile VHF, FM, and SINCGARS) –Air Force radios (VHF AM), –Naval Radios (VHF AM and HF SSB teleprinters) –Satellites (microwave QAM). SpeakEasy Phase II –4 MHz to 400 MHz range –more quickly reconfigurable architecture (i.e. several conversations at once) –cross-channel connectivity (i.e "bridge" different radio protocols). –Air ForceTactical Air Control Party (TACP) Personnel, using a VHF/AM Radio communicated with an F-16 operating on a UHF Radio.

Brief History … contd. Joint Tactical Radio Systems –based on an internationally endorsed open Software Communications Architecture (SCA). –CORBA on POSIX operating systems to coordinate various software modules. –First known use of FPGAs Amateur Software Radio –GNU Radio - free software toolkit for learning about, building, and deploying Software Defined Radios. (1998) –The goal is to give ordinary software people the ability to 'hack' the electromagnetic spectrum - to understand the radio spectrum and think of clever ways to use it.

Quick Recap - Radio Source - Wikipedia

The Superheterodyne Receiver Source - Wikipedia

Software Radio

Change from Hardware to Software Radio Move analog/digital (A/D) conversion as close to the receiving antenna as possible. Substitute software for hardware processing Transition from dedicated to general-purpose hardware – from ASICs to FPGAs and DSPs and even general purpose processors.

Software functions Signal generation Waveform modulation and demodulation Baseband and digital signal processing functions Use of intermediate frequencies (such as for frequency hopping) Use of multiple link-layer protocols Security and encryption Dynamic selection of parameters.

Components Software collected in libraries: Signal processing modules: –Basic functions such as coding and modulation. Real-time control modules: –Supervise the processing flow, perform the scheduling of the signal processing and hardware interface modules. Hardware interface modules: –Manage the data input/output flow from and toward the IF stage.

Difficulties Antennas and LNAs serving bandwidths ranging from 100s of MHz to 10s of GHz Jitters in A/D conversion at RF

Software Architecture of SDR

Software Download SMART CARD LOADING (SIM) Advantages –Error free, faster, no overhead on network Disadvantages –Memory and processing power –Sale points of smart cards AIR INTERFACE DOWNLOAD Advantages –Easy for user. –Better managed Disadvantages –Network overhead – dedicated channel, defined download procedure. –Error control –Speed –Security

Software Radios in Wireless Networking Mobile computing device with wide range of connectivity options. –Cellular –Wireless LAN –Satellite systems Spectrum Ware software radio system –All physical layer functions implemented in software. Contribution –Flexible easy to use software radio research platform/ testbed. Components –Signal acquisition –I/O subsystem – A/D/A converter to memory and vice versa –Programming environment – Signal Processing Environment for Continuous Real-Time Applications (SPECTRA) –Radio Specification model – Next slide Data link - Link Framing, MAC, Coding, Modulation,

Software Radio Layering Model

Virtual Radios Does all the Digital Signal Processing in off-the-shelf workstation (e.g PC). –Experimentation –Integration with other applications. –Rapid deployment –Current work stations have enough processing power Implemented as –A software cellular receiver –A software network interface “card”.

Flavours of Software Radio Tier 1 - Software-Controlled Radios (SCR). –multiple transceivers –software control functions activate transceiver as required –e.g. dual mode cell phones – support CDMA and GSM Tier 2 – Reconfigurable Software Defined Radios (SDR) –what is available now –software controls modulation techniques, wideband and narrowband operation, security, and the waveform requirements. –Software starts from IF processing Tier 3 – Ideal Software Radio –The future –A/D conversion at antenna –Software starts from RF onwards Tier 4 – Ultimate Software Radio –Hypothetical – only for comparisons.

Advantages Reconfigurability Interoperability Low cost solutions – software cheaper than hardware, mass production Time to market Easy to fix bug – once shipped. Quick evolution of end user equipment, communication and network infrastructures. Easier upgrade for evolving link-layer communication protocol standards. Increase product lifetime – reduce obsolescence. Future-proof!!

Issues Security – of downloading an upgrade. Fast, easy to perform, error-free download despite mobility of end user terminals Higher processing power required. Battery/power consumption – with all the increased processing load. Licensing issues with FCC

Some bits of info….. Industry support for SDR on the network/base station side. –Cost and battery power of handset are limitations. FCC introduced special licensing process for software radio – “permissive change” – Sep 2004 FCC approved the Vanu Software Radio GSM Base Station –Supports multiple cellular technologies and frequencies at the same time. –Can be modified in the future without any hardware changes. –Runs on an off-the–shelf server and standard OS.

Cognitive Radios On the Horizon “Cognitive" - being aware of and making judgments about something. A cognitive radio will be able to sense its surroundings and the presence of other signals. Use that information, and adapt, without user intervention, to its user’s communication needs. Sense unused range of the unlicensed spectrum and switch to a frequency that will give better performance. Select the correct radio interface, channel, data rate, etc., to provide maximum data throughput to the user's application

Discussion What could be the possible impact on higher layers of networking? Adverbs and adjectives.

Links of interest SDR Forum - SDR resources page – GNU software radio project - SDRadio - Vanu Inc. -

Thank You.