The Lightweight Straw Tube Tracker for PANDA Detector at GSI Andrey Sokolov *,1, James Ritman 1, Peter Wintz 1, Paola Gianotti 2, Dario Orecchini 2 1 Institut.

Slides:



Advertisements
Similar presentations
Lothar Naumann Institut für Strahlenphysik Abteilung Hadronenphysik Mitglied der Leibniz-Gemeinschaft MuCH Straw Tube Tracker - Motivations.
Advertisements

Planar-GEM Trackers Bernd Voss Helmholtzzentrum für Schwerionenforschung GmbH (GSI)
The Central Straw Tube Tracker In The PANDA Experiment
Progress in the construction of the MICE cooling channel and first measurements Adam Dobbs, EPS-HEP, 23 rd July 2011.
James Ritman Univ. Giessen Overview of the Proposed Antiproton Facility Antiproton production facility High Energy Storage Ring (HESR) Electron cooling.
C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Selected detector components Simulations.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Detector components Trigger Costs.
Christine KOURKOUMELIS University of Athens ATLAS Muon Chamber construction in Greece and alignment studies for H  ZZ  4μ decay Como, 8/10/03.
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Oct. 5 th th International Workshop on Heavy Quarkonium 2011 Jim Ritman Mitglied der Helmholtz-Gemeinschaft Status of PANDA.
The CMS Muon Detector Thomas Hebbeker Aachen July 2001 Searching for New Physics with High Energy Muons.
Mitglied der Helmholtz-Gemeinschaft Andrey Sokolov IKP FZ Jülich, Germany The Central Tracker of the PANDA Detector The X International Conference on Instrumentation.
Working Group 5 Summary David Christian Fermilab.
Mitglied der Helmholtz-Gemeinschaft Petersburg Nuclear Physics Institute, Russia Storage cells for internal experiments with Atomic Beam Source at the.
Precision Drift Chambers for the ATLAS Muon Spectrometer Susanne Mohrdieck Max-Planck-Institut f. Physik, Munich for the ATLAS Muon Collaboration Abstracts:
1 Plans for JINR participation at FAIR JINR Contributions: ● Accelerator Complex ● Condensed Baryonic Matter ● Antiproton Physics ● Spin Physics Physics.
Research in Particle Beam Physics and Accelerator Technology of the Collaboration IKP Forschungszentrum Jülich & JINR A.N. Parfenov for the Collaboration.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Valery Dormenev Institute for Nuclear Problems, Minsk
Atlas Detector. ATLAS Components Discovers head-on collisions of protons of extraordinarily high energy.
Status of straw-tube tracker V.Peshekhonov, D.Peshekhonov, A.Zinchenko JINR, Dubna V.Tikhomirov P.N.Lebedev Physics Institute, Moscow Presented on the.
Muon-raying the ATLAS Detector
Mitglied der Helmholtz-Gemeinschaft Calibration of the COSY-TOF STT & pp Elastic Analysis Sedigheh Jowzaee IKP Group Talk 11 July 2013.
Anders Kirleis Stony Brook University The Design Of A Detector For The Electron Ion Collider.
The Status of the ATLAS Experiment Dr Alan Watson University of Birmingham on behalf of the ATLAS Collaboration.
Luca Spogli Università Roma Tre & INFN Roma Tre
PANDA GSI 13. December 2006 PID TAG Georg Schepers PANDA Technical Assessment Group PID Status Report G. Schepers for the PID TAG GSI PID TAG.
J.RItman PANDA Collab. Meeting, May 2003 Status of the PANDA Simulations Event Generator UrQMD p A MVD Resolution Time of Flight Estimates of Data Rates.
1 Participation of the Joint Institute for Nuclear Research (Dubna) in PANDA experiment at Future GSI Facility Nuclear Structure Physics Physics with Antiprotons.
Precision Drift Chambers for the ATLAS Muon Spectrometer
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
Progress in the construction of the MICE cooling channel and first measurements Adam Dobbs, EPS-HEP, 23 rd July 2011.
The Polarized Internal Target at ANKE: First Results Kirill Grigoryev Institut für Kernphysik, Forschungszentrum Jülich PhD student from Petersburg Nuclear.
2002 LHC days in Split Sandra Horvat 08 – 12 October, Ruđer Bošković Institute, Zagreb Max-Planck-Institute for Physics, Munich Potential is here...
CGEM-IT project and beam test program G. Felici for the FE-LNF-TO team Partially supported by the Italian Ministry of Foreign Affairs under the Program.
M. Garcia-Sciveres July 2002 ATLAS A Proton Collider Detector M. Garcia-Sciveres Lawrence Berkeley National Laboratory.
Christian Lippmann (ALICE TRD), DPG-Tagung Köln Position Resolution, Electron Identification and Transition Radiation Spectra with Prototypes.
Detectors for VEPP-2000 B.Khazin Budker Institute of Nuclear Physics 2 March 2006.
1/28 VISITS TO COMPASS / NA58 Seminar for guides 9 March 2005 Susanne Koblitz Gerhard Mallot.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Outline Description of the experimental setup Aim of this work TDC spectra analysis Tracking method steps Autocalibration Single tube resolution Summary.
FTOF Status Anton A. Izotov, Frascati
FEE for Muon System (Range System) Status & Plans G.Alexeev on behalf of Dubna group Turin, 16 June, 2009.
The high performance PANDA detector International Workshop on Antiproton Physics and Technology at FAIR Julian Rieke, JLU Giessen on behalf of the PANDA.
Central Tracker Cabling and Mechanics Paola Gianotti26/4/111.
Precision Drift Tube Detectors for High Counting Rates O. Kortner, H. Kroha, F. Legger, R. Richter Max-Planck-Institut für Physik, Munich, Germany A. Engl,
Tracker Neutron Detector: INFN plans CLAS12 Central Detector Meeting - Saclay 2-3 December 2009 Patrizia Rossi for the INFN groups: Genova, Laboratori.
E+/e- Backgrounds at BEPCII/BESIII JIN Dapeng Aug. 22, 2011.
Study of a Superconducting Shield for a Transverse Polarized Target for PANDA 2012 Paris Helmholtz Institut Mainz Bertalan Feher, PANDA EMP Session Status.
FWD Meeting, Torino, June 16th, News from Cracow on the forward tracking J. Smyrski Institute of Physics UJ Tests of CARIOCA and LUMICAL preamplifiers.
24 May 2008V.Kekelidze, CC NICA/MPD1  Collider versus Fixed Target  Towards 4  acceptance  Working groups - EC  TPC - EC tracking (examples)  Plans.
1 straw tube signal simulation A. Rotondi PANDA meeting, Stockolm 15 June 2010.
A. Parenti 1 RT 2007, Batavia IL The CMS Muon System and its Performance in the Cosmic Challenge RT2007 conference, Batavia IL, USA May 03, 2007 Andrea.
DIRCs for PANDA M. Hoek for the PANDA Cherenkov Group.
1 A. Zech, Instrumentation in High Energy Astrophysics Chapter 6.2: space based cosmic ray experiments.
for the HADES Collaboration
English for young physicists WS 09/10 Niklas Müller
Status of the forward tracker design
Status of BESIII and upgrade of BESIII
The Electromagnetic Calorimetry of the PANDA Detector at FAIR
Activities on straw tube simulation
Electromagnetic Physics Working Group discussion
First results from prototype measurements
Start Detector for pion experiments
U.Frankenfeld GSI Darmstadt
The Compact Muon Solenoid Detector
Plans for nucleon structure studies at PANDA
STAR Detector Event selection and triggers Corrections to data
ACCELERATORS AND DETECTORS
Presentation transcript:

The Lightweight Straw Tube Tracker for PANDA Detector at GSI Andrey Sokolov *,1, James Ritman 1, Peter Wintz 1, Paola Gianotti 2, Dario Orecchini 2 1 Institut für Kernphysik, Forschungszentrum Jülich 2 Laboratori Nazionali di Frascati, Italy

PANDA detector Target spectrometer: MVD + STT/TPC + MDC Time Of Flight DIRC + RICH Electro-Magnetic Calorimeter Muon detection Superconducting solenoid Forward spectrometer: Dipole magnet MDC or STT RICH EMC Hadron calorimeter Muon detection STT or TPC Bernd Ketzer HK57.1

Requirements to the Central Tracker  Almost full angular coverage;  High momentum resolution, δp/p~1% ;  High spatial resolution, σ rφ ~150μm, σ z ~1-3mm ;  Minimal detector material budget, X 0 ~1% ;  High rate capability, 10 7 ev/s ;  Resistance against aging effects, 1-2 C/cm/year ;

Central Tracker Options Time-Projection Chamber (Christian Höppner, HK 38.2) Straw Tube Tracker

Straw Tube r Typical spatial resolution μm ~2 kV Ar+CO 2

Straw Tube

Pressure Stabilized Straw Tube Elongation 1.5mm +50 μ m P abs =2 atm Overpressure gives the stability and rigidity to the straw tube, but it also change straw tube dimensions. That should be taken into account in the tracker design.

COSY –TOF Straw Tube Tracker One double layer Pressure Stabilized Straw Tube Tracker

Spatial Resolution Spatial resolution of the COSY-TOF straw tube tracker Ar+20%CO 2

Proposed PANDA pressure stabilized straw tube tracker Pressure Stabilized Straw Tube Tracker 1.5m

Aging Phenomena in Straw Tube  Gas gain in the straw tube can deteriorate and dark current (noise) can increase with a time due to aging effects, namely: –deposit of the conductive polymers on the wire surface; –formation of an insulation coating on the cathode (Malter effect); –anode wire swelling by the free radicals; –oxidation of the conductive layer on the cathode surface.  These aging phenomena are typically observed for the accumulated charge values > 1-3 C/cm, depending on the gas mixture.

Aging Phenomena in Straw Tube Anode wire surface after irradiation [ATLAS TRT, NIM A512(166)]

Longitudinal Hits Projection 1000 events of pp collisions (DPM generator) protons

Hit/Charge Density Along Straw Length

Conclusions and Outlook  New design for the PANDA Straw Tube Tracker has been proposed;  The total weight of the tracker will be only about 50 kg;  The spatial resolution is about 150μm using Ar+10%CO 2 gas mixture;  The background simulation shows the very high radiation load;  The beam test is under preparation;  The test and simulation results of the PANDA straw tube tracker demonstrate the feasibility of the chosen detector concepts.

 Total number of tubes - ~5000 ;  Radial dimensions – 16-42cm ;  Length – 1.5m ;  Tube diameters – 10mm ;  Tube wall material – Mylar, 30μm ;  Anode wire – W/Re, 20μm ;  Spatial resolution – σ rφ ≈150μm, σ z ≈3-10mm ;  Gas filling – Ar+10%CO 2 ;  Gas absolute pressure – 2 bar ;  Thickness - ~1% X 0. STT parameters

Longitudinal Coordinate Measurement  Skewed layers –1-4 mm precision;  Charge sharing: –10-20 mm precision;  Time of charge propagation: –10-20 mm precision. One planar double-layer with the skewed straw tubes

HESR: High Energy Storage Ring Beam Momentum GeV/c High Intensity Mode: Luminosity 2x10 32 cm -2 s -1 (2x10 7 Hz)  p/p(st. cooling)~10 -4 High Resolution Mode: Luminosity 2x10 31 cm -2 s -1  p/p(e- cooling)~10 -5

Straw Tube Straw Tube Tracker