Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mitglied der Helmholtz-Gemeinschaft Andrey Sokolov IKP FZ Jülich, Germany The Central Tracker of the PANDA Detector The X International Conference on Instrumentation.

Similar presentations


Presentation on theme: "Mitglied der Helmholtz-Gemeinschaft Andrey Sokolov IKP FZ Jülich, Germany The Central Tracker of the PANDA Detector The X International Conference on Instrumentation."— Presentation transcript:

1 Mitglied der Helmholtz-Gemeinschaft Andrey Sokolov IKP FZ Jülich, Germany The Central Tracker of the PANDA Detector The X International Conference on Instrumentation for Colliding Beam Physics Novosibirsk, Russia 28.02-5.03.2008

2 2 Outline Overview of FAIR project Layout of PANDA detector PANDA Central Tracker:  Micro-Vertex Detector  Straw Tube Tracker Conclusions and Outlook. 29.2.20082Andrey Sokolov

3 29.2.2008Andrey Sokolov3

4 4 Facility for Antiproton and Ion Research 29.2.2008Andrey Sokolov4 GSI, Darmstadt - heavy ion physics; - nuclear structure; - atomic and plasma physics; - cancer therapy. FAIR: New facility - heavy ion physics; - higher intensities & energies; - antiproton physics.

5 5 FAIR 29.2.2008Andrey Sokolov5 Key Technical Features Cooled beams; Rapidly cycling superconducting magnets; Parallel Operation. Storage and Cooler Rings Radioactive beams; e - – A (or p -A) collider; 10 11 stored and cooled antiprotons 0.8 - 14.5 GeV/c; Future: Polarized antiprotons (?). Primary Beams 238U 28+ : 10 12 /s @ 1.5-2 Age; 238U 92+ : 10 10 /s @ up to 35 AGeV Protons : 2 x10 13 /s @ 30 GeV; up to 90 GeV; 100-1000 times present intensity. Secondary Beams Broad range of radioactive beams; up to 1.5 - 2 AGeV; intensity up to 10 000x over present; Antiprotons 0 - 15 GeV. SIS 100/300 HESRSuper FRS RESR CR NESR FLAIR UNILAC SIS 18 FRS ESR Existing New

6 6 High Energy Storage Ring 29.2.2008Andrey Sokolov6 PANDA Parameters of HESR Injection of p at 3.7 GeV; Beam momentum - 1.5-14.5 GeV/c; Storage ring for internal target operation; Luminosity up to L~ 2x10 32 cm -2 s -1 ; Beam cooling (stochastic & electron); Energy resolution down to 4·10 -5. E CM

7 7 The Physics Overview Charmonium and open charm spectroscopy;Charmonium and open charm spectroscopy; Charmed hybrids and glueballs:Charmed hybrids and glueballs: - Many narrow states are predicted; Interaction of charmed particles with nuclei:Interaction of charmed particles with nuclei: - Meson mass modification in the nuclear matter; Hypernuclei:Hypernuclei: - Double hypernuclei production via Ξ-baryon capture; Many further options:Many further options: - Wide angle compton scattering; - Baryon-Antibaryon production; - CP-Violation (Λ,D). 29.2.2008Andrey Sokolov7

8 8 Antiproton ANnihilations at DArmstadt: PANDA 29.2.2008Andrey Sokolov8 Detector requirements: nearly 4π solid angle for PWA; high rate capability: 2x10 7 interactions/s; efficient event selection; good momentum resolution ≈ 1%; vertex info for D, K 0, Σ, Λ; good PID (γ, e, μ, π, Κ, p); photon detection 1 MeV – 10 GeV.

9 9 PANDA Detector 29.2.2008Andrey Sokolov9

10 10 PANDA Detector 29.2.2008Andrey Sokolov10 Target Spectrometer: Superconducting solenoid for high p t tracks. Pellet or Cluster Jet Target Forward Spectrometer Dipole magnet for forward tracks

11 11 PANDA Detector: PID 29.2.2008Andrey Sokolov11 Barrel DIRC (G.Shepers) Endcap DIRC Barrel TOF Forward TOF Forward RICH Muon Detectors

12 12 PANDA Detector: Calorimeters 29.2.2008Andrey Sokolov12 PWO Calorimeters, (P.Semenov) Forward Shashlyk EMC Hadron Calorimeter

13 13 PANDA Detector: Tracking 29.2.2008Andrey Sokolov13 Micro vertex Detector Tracker GEM Detectors Drift Chambers P ANDA Central Tracker

14 14 Micro-Vertex Detector: Challenges Provide an information about secondary vertices from charm and strange particles decays: c  123μm for D 0, c  8.71cm for  0  high precision and large sensitive volume; Broad momentum range of the outgoing particles: low material budget to minimize multiple scattering; Asymmetric particle flux due to the fixed target nature of experiment: specific detector layout; Continuous beam operation: triggerless operational mode; High event rate (up to 10 7 evt/s); Particle identification. 29.2.2008Andrey Sokolov14

15 15 Micro-Vertex Detector 29.2.2008Andrey Sokolov15 Beam Beam pipe Target pipe

16 16 Micro-Vertex Detector 29.2.2008Andrey Sokolov16 4 Barrel Layers

17 17 Micro-Vertex Detector 29.2.2008Andrey Sokolov17 6 Forward Disks

18 18 Micro-Vertex Detector: Pixel Part 29.2.2008Andrey Sokolov18   Hybrid pixels 100x100 µm 2 ;   120 modules;   Maximum rate up to 10 Mhits/s/module;   ~10 M channels;   ToT;   0.15 m 2 ;   ~1% X 0 per layer.

19 29.2.2008Andrey Sokolov19 Micro-Vertex Detector: Pixel Part Front-End chip: ATLAS front end chip as a starting point; Custom pixel front-end chip – TOPIX (TOrino PIXel) in 0.13µm CMOS:  TOPIX1 – only analogue part (2005);  TOPIX2 – preamp + buffers (2007). Maximum hit rate up to 2 MHits/s  data rate 200Mbit/s; Thickness ~ 200µm.Sensor: Epitaxial silicon sensors:Epitaxial silicon sensors:  50  50µm, 75µm, 100µm under testingin Torino. INFN Torino

20 20 MVD: Strip Part 29.2.2008Andrey Sokolov20 ~400 modules;~400 modules; ~0.5m 2 active area;~0.5m 2 active area; ~70.000 readout channels.~70.000 readout channels.

21 21 MVD: Strip Part 29.2.2008Andrey Sokolov21 Microstrip readout: 128-channel ASIC for strips; Prototype n-XYTER chip for DETNI (GSI);   Fast timing shaper/amplifier with comparator (1ns time resolution);   Slow channel for analog r/o with peak detector;   Token ring readout of hit channels. Next iteration with lower power consumption; Self-triggering operation mode. Sensor: Silicon double side strip sensor with pitch 100µm.

22 22 MVD: Spatial resolution 29.2.2008Andrey Sokolov22

23 23 MVD: Particle Identification 29.2.2008Andrey Sokolov23

24 29.2.2008Andrey Sokolov24 MVD Support Structure It’s planned to build the support structure out of the 2mm Carbon foam.

25 29.2.2008Andrey Sokolov25 STT Assembling and Installation

26 29.2.2008Andrey Sokolov26 Tracker: TPC Option Multi-GEM stack for amplification and ion backflow suppression; Gas: Ne/CO 2 (+CH 4 /CF 4 ); 100k pads of 2 x 2 mm 2 ; 50-70µs drift, 700 events overlap.Simulations: p/p ~ 1%; dE/dx resolution ~ 6%. Challenges: space charge build-up; continuous sampling; Field homogeneity better 2%; ∫B r /B z dz < 2mm.

27 29.2.2008Andrey Sokolov27 Straw Tubes Tracker ~4100 straws; 30µm Al-mylar tube, Ø=10mm, l=1.5m; R in = 16cm, R out = 42cm; Gas filling Ar/10%CO 2 ; Light detector with X/X 0 ~ 1.0-1.3%. Axial layers:  r  < 150µm, A   ~ 99%; Skewed layers: Skewed layers:  z ~ 3mm, A    ~ 90-95% ; Momentum resolution:  pt / p t ~ 1.2 %  pt / p t ~ 1.2 %

28 29.2.2008Andrey Sokolov28 STT Layout Self-supporting straw layers at ~1 bar overpressure. 1.5m  10mm

29 29 PANDA Detector 29.02.2008Andrey Sokolov29 Straw Tube Tracker

30 29.2.2008Andrey Sokolov30 COSY-TOF Straw Tube Tracker 3120 straw tubes in 15 planar double layers ; Aligned at  = 0°, 60°, 300° for 3d-reconstruction; Gas: Ar/CO 2 (10%), p=1.2bar; Active volume: 1m 2 x 30cm; Resolution:  r  100 µm; Efficiency:   99%; Radiation length: X/X 0 1.3%; Lowest detector weight ~ 15kg   total stretching force ~ 3200 kg! Operates in vacuum. 1m

31 29.2.2008Andrey Sokolov31 COSY-TOF STT: Cosmic Ray Test è Spatial resolution  ~ 100µm limited ionisation clusters near tube wall  Radial efficiency  ~ 98%

32 29.2.2009Andrey Sokolov32 STT Particle Flux Density Recoil protons from the target produce a charge load up to 0.4C/cm/year.

33 29.2.2008Andrey Sokolov33 STT Aging Beam Test 32 straws in doble layer;32 straws in doble layer; 3 gas mixtures:3 gas mixtures:   Ar+10%CO 2 ;   Ar+30%CO 2 ;   Ar+30%C 2 H 6. Proton beam:Proton beam:   3GeV/c;   up to 810 6 protons/s;   beam spot  ~4cm. Gas gain.5-110 5.Gas gain.5-110 5. Accumulated charge up to 1.2Q/cm (~3 years of PANDA operation).Accumulated charge up to 1.2Q/cm (~3 years of PANDA operation).

34 29.2.2008Andrey Sokolov34 STT Aging Test Maximum gain drop less than 10%!

35 29.2.2008Andrey Sokolov35 Conclusions FAIR project has been officially started. PANDA will be a versatile detector for charm physics. The design and prototyping of MVD is on the good way:  Two prototypes of the front end pixel chip are released.  The prototope for the strip front end chip is under construction. The MVD design comprises the good spatial resolution with PID capabilities. The straw tubes is suggested as option for PANDA tracker. Due to the new technique STT will have very low material budget combining with the good spatial resolution and efficiency. The beam test shows sufficient radiation hardness of STT.

36 29.2.2008Andrey Sokolov36 Outlook TOPIX3 prototype should be ready by the end of this year; Half-cylinder full length STT prototype should be finished in the next year; The PANDA TDR will be ready in the beginning 2010; PANDA commissioning in 2015.

37 29.2.2008Andrey Sokolov37 The PANDA Collaboration U Basel IHEP Beijing U Bochum U Bonn U & INFN Brescia U & INFN Catania Cracow JU,TU, IFJ PAN GSI Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen U Helsinki IKP Jülich I + II U Katowice IMP Lanzhou U Mainz U & Politecnico & INFN Milano U Minsk Moscow, ITEP & MPEI TU München U Münster BINP Novosibirsk LAL Orsay U Pavia IHEP Protvino PNPI Gatchina U of Silesia U Stockholm KTH Stockholm U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste U Tübingen U & TSL Uppsala U Valencia SMI Vienna SINS Warsaw U Warsaw More than 420 physicists from 55 institutions in 17 countries


Download ppt "Mitglied der Helmholtz-Gemeinschaft Andrey Sokolov IKP FZ Jülich, Germany The Central Tracker of the PANDA Detector The X International Conference on Instrumentation."

Similar presentations


Ads by Google