Copyright Pearson Prentice Hall

Slides:



Advertisements
Similar presentations
6d. Know how water, carbon, & nitrogen cycle between abiotic resources and organic matter in the ecosystem and how oxygen cycles through photosynthesis.
Advertisements

Unit 1 Ecosystems Cycles of Matter.
Ecology II - Cycles of Matter
Science Standard 6d: Biogeochemical Cycles/ Nutrient Cycles Ch. 3 Sec
1. Review- By what two processes is water cycled from land to the atmosphere Sequence- Describe one way in which water from Lake Superior may make one.
Cycles in Matter Chapter 3.4.
Cycles of Matter Unlike the one-way flow of energy,
Cycles of Matter Matter is the substance that all objects are made of. Matter flows through an ecosystem in a cycle.
Copyright Pearson Prentice Hall
Slide 1 of 33 Copyright Pearson Prentice Hall Biology.
Biogeochemical Cycles
End Show Slide 1 of 33 Copyright Pearson Prentice Hall Biology.
End Show Slide 1 of 33 Copyright Pearson Prentice Hall Biology.
End Show Slide 1 of 33 Copyright Pearson Prentice Hall Biology.
End Show Slide 1 of 21 Copyright Pearson Prentice Hall Biology.
End Show Slide 1 of 33 Copyright Pearson Prentice Hall Biology.
Ecosystems Section 3 Ecology 4.3 Notes. Ecosystems Section 3 Objectives Describe each of the biogeochemical cycles.
End Show Slide 1 of 33 Copyright Pearson Prentice Hall Cycles of Matter.
Cycles of Matter Photo Credit: ©Bruce Coleman, LTD/Natural Selection.
End Show Slide 1 of 33 Copyright Pearson Prentice Hall Biology.
End Show Slide 1 of 33 Copyright Pearson Prentice Hall 3–3 Cycles of Matter.
Cycles of Matter 3-3. Energy and matter move through the biosphere very differently Energy has a 1 way flow Matter can be recycled within & between ecosystems.
Cycles of Matter. Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter.
End Show Slide 1 of 33 IV Cycles of Matter. Slide 2 of 33 Copyright Pearson Prentice Hall Cycles of Matter How does matter move among the living and nonliving.
Lesson Overview Lesson Overview Cycles of Matter Lesson Overview 3.4 Cycles of Matter.
Cycles of Matter In an Hour or Less!!!!. Recycling in the Biosphere  Unlike the one-way flow of energy, matter is recycled within and between ecosystems.
Lesson Overview 3.4 Cycles of Matter.
Biogeochemical Cycles. What is ecology?  The scientific study of interactions among organisms and between organisms and their environment is ecology.
III. Cycles of Matter *While energy is crucial to an ecosystem, all organisms need water, minerals, and other life-sustaining compounds to survive. In.
CYCLES OF MATTER NATURAL WORLD. Objectives Describe how matter cycles between the living and nonliving parts of an ecosystem. Explain why nutrients are.
 Although energy is essential for life, organisms need much more  Over 95% of most living organisms are made up of just 4 elements 1.Oxygen 2.Carbon.
3–3 Cycles of Matter Slide 1 of 33 Copyright Pearson Prentice Hall Organic phosphate moves through the food web and to the rest of the ecosystem. Nutrient.
Slide 1 of 33 Copyright Pearson Prentice Hall 3–3 Cycles of Matter.
Activity #18: Cycles of Matter. EQ How do Earth’s biotic and abiotic factors interact to shape ecosystems and affect the survival of organisms over time?
Biogeochemical Cycles/ Nutrient Cycles Ch. 3 Sec. 3
End Show Slide 1 of 33 Biology Cycles Mr. Karns. End Show Slide 2 of 33 3–3 Cycles of Matter.
Slide 1 of 33 Copyright Pearson Prentice Hall 3–3 Cycles of Matter.
Cycles of Matter Matter moves in Biogeochemical cycles through living systems, the Earth, the atmosphere, and the oceans. These cycles connect biological,
Cycles of Matter All organisms need 4 essential elements: Oxygen, hydrogen, carbon, nitrogen.
Slide 1 of 33 Copyright Pearson Prentice Hall 3–3 Cycles of Matter.
Cycles of Matter Biology pgs
End Show Slide 1 of 33 Copyright Pearson Prentice Hall Biology.
Slide 1 of 33 Copyright Pearson Prentice Hall Biology.
2. Name two of the four biogeochemical cycles.
Chapter 2 The Biosphere. Copyright Pearson Prentice Hall 3-1 What Is Ecology?
End Show 3–3 Cycles of Matter Slide 1 of 33 Copyright Pearson Prentice Hall 16. Do energy and matter move through the biosphere differently? Yes, unlike.
Cycles of Matter. More Than Just Energy All living organisms need energy to survive, but they also need….. 1.Water 2.Minerals 3.And other life sustaining.
Ecology, Energy Flow, & Cycles of Matter
Ecology 4.3 Notes.
Biogeochemical (Nutrient) Cycles
Copyright Pearson Prentice Hall
Cycles of Matter MATTER CYCLES
Copyright Pearson Prentice Hall
3–3 Cycles of Matter Objectives:
How does matter move among the living and nonliving parts of an ecosystem? 3–3 Cycles of Matter Photo Credit: ©Bruce Coleman, LTD/Natural Selection.
Recycling in the Biosphere
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
3–3 Cycles of Matter Objectives:
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
3-3 Cycles of Matter.
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Presentation transcript:

Copyright Pearson Prentice Hall 3–3 Cycles of Matter Photo Credit: ©Bruce Coleman, LTD/Natural Selection Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? Copyright Pearson Prentice Hall

Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems. Copyright Pearson Prentice Hall

Recycling in the Biosphere Matter (elements, chemical compounds, etc.) are passed from one organism to another Matter is assembled into living tissue, passed out of the body, or decomposed. AND from one part of the biosphere to another through biogeochemical cycles. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall What are the two reasons we need food? Energy. Organic compounds (carbs, lipids, proteins, and nucleic acids) Build us. Organic compounds contain the carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur that make up most of our bodies. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall The Water Cycle The Water Cycle All living things require water to survive. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall The Water Cycle Water moves between the ocean, atmosphere, and land. This diagram shows the main processes involved in the water cycle. Scientists estimate that it can take a single water molecule as long as 4000 years to complete one cycle. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Cycles How are nutrients important in living systems? Remember the two reasons why you need food (nutrients): --For energy and building materials Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Cycles Nutrient Cycles All the chemical substances that an organism needs to sustain life are its nutrients. Every living organism needs nutrients to build tissues and carry out essential life functions. Similar to water, nutrients are passed between organisms and the environment through biogeochemical cycles. Copyright Pearson Prentice Hall

Rembember this chart? Matter is neither created nor destroyed Group Name Chemical composition (made up of…) Examples Function (job) in living things CARBOHYDRATES C,H,O LIPIDS NUCLEIC ACIDS C,H,O,N, P PROTEINS C,H,O,N, S Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Cycles The Carbon Cycle Carbon is a key ingredient of living tissue. Biological processes such as photosynthesis, respiration, and decomposition, take up and release carbon and oxygen. Geochemical processes such as erosion and volcanic activity, release carbon dioxide to the atmosphere and oceans. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Cycles CO2 in Atmosphere Photosynthesis Volcanic activity feeding Respiration Erosion Human activity Respiration Decomposition CO2 in Ocean Uplift Carbon is found in several large reservoirs in the biosphere. In the atmosphere, it is found as carbon dioxide gas; in the oceans as dissolved carbon dioxide; on land in organisms, rocks, and soil; and underground as coal, petroleum, and calcium carbonate rock.  Deposition Photosynthesis feeding Fossil fuel Deposition Carbonate Rocks Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Cycles The Nitrogen Cycle All organisms require nitrogen to make nucleic acids and proteins! Although nitrogen gas is the most abundant form of nitrogen on Earth-80% of atmosphere is N2 gas. THIS IS UNUSABLE BY ALMOST EVERYTHING, EXCEPT… Bacteria live in the soil and on the roots of plants called legumes (beans, clover, etc.). They convert nitrogen gas (unusable form) into ammonia (usable form) in a process known as nitrogen fixation. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Cycles THEN… Other bacteria in the soil convert ammonia into nitrates and nitrites. Once these products are available, producers can use them to make proteins. Consumers then eat the producers and reuse the nitrogen to make their own proteins or nucleic acids. Copyright Pearson Prentice Hall

NH3 N2 in Atmosphere NO3 and NO2 Nutrient Cycles Synthetic fertilizer manufacturer Atmospheric nitrogen fixation Denitrification Uptake by producers Reuse by consumers Uptake by producers Reuse by consumers The atmosphere is the main reservoir of nitrogen in the biosphere. Nitrogen also cycles through the soil and through the tissues of living organisms.  Decomposition, excretion Decomposition, excretion Bacterial nitrogen fixation NO3 and NO2 NH3 Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Cycles When organisms die, decomposers return nitrogen to the soil as ammonia. The ammonia may be taken up again by producers. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Cycles Other soil bacteria convert nitrates into nitrogen gas in a process called denitrification. This process releases nitrogen into the atmosphere once again. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Cycles The Phosphorus Cycle Phosphorus is essential to organisms because it helps forms important molecules like DNA and RNA. Most phosphorus exists in the form of inorganic phosphate—in rocks. Inorganic phosphate is released into the soil and water as sediments wear down. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Cycles Organic phosphate moves through the food web and to the rest of the ecosystem. Organisms Phosphorus in the biosphere cycles among the land, ocean sediments, and living organisms. Land Ocean Sediments Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Limitation Nutrient Limitation The primary productivity of an ecosystem is the rate at which organic matter (carbohydrates) is created by producers through photosynthesis. One factor that controls the primary productivity of an ecosystem is the amount of available nutrients. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Nutrient Limitation If a nutrient is in short supply, it will limit an organism's growth. When an ecosystem is limited by a single nutrient that is scarce or cycles very slowly, this substance is called a limiting nutrient. Therefore: lower amounts of nitrogen or phosphorus LIMIT the growth of plants. If a plant can’t make proteins or nucleic acids it can’t build or run itself. What happens if large amounts of N or P are added? Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall 3–3 Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall 3–3 Transpiration is part of the water cycle. carbon cycle. nitrogen cycle. phosphorus cycle. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall 3–3 Carbon is found in the atmosphere in the form of carbohydrates. carbon dioxide. calcium carbonate. ammonia. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall 3–3 Biologists describe nutrients as moving through cycles because the substances start as simple organic forms that plants need. provide “building blocks” and energy that organisms need. are passed between organisms and the environment and then back to organisms. are needed by organisms to carry out life processes. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall 3–3 The only organisms that can convert nitrogen in the atmosphere into a form useful to living things are nitrogen-fixing plants. bacteria. detritivores. animals. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall 3–3 When an aquatic ecosystem receives a large input of a limiting nutrient, the result is runoff. algal death. algal bloom. less primary productivity. Copyright Pearson Prentice Hall

END OF SECTION