Mining in Western Australia. The Western Australian mining industry is the largest and most diversified resource industry in Australia. The state encompasses.

Slides:



Advertisements
Similar presentations
Metals in Industry, working with metals. Iron and Steel In previous work we considered the role of the blast furnace in extracting iron from its ore.
Advertisements

Angstrom Care 1www.AngstromCare.com Angstrom Care Metals in Industry.
1 Secondary 4 Chemistry Extraction of Aluminium via electrolysis JT 2009 Raffles Programme.
Unit 4: Chemistry at Work Area of Study 2 – Using Energy
Historical Availability of Metals Before 1800’s, only 10 were in use: Cu, Sn, Fe, Pb, Au, Ag, Zn, Hg, Bi, Pt They were either found uncombined Or Extracted.
12 Chemistry 2.2 quantitative chemistry CR 07 Practical uses of Electrolysis Electrolysis is an expensive process because of the energy involved. Electrolysis.
UNDERSTANDING METALS AND NON-METALS
ATMOSPHERE OCEAN ROCKS & MINERALS
Element Elements and Compounds Compounds of Sodium Structure of Atom Compounds A compound is a substance composed of two or more elements, chemically combined.
Materials for Civil and Construction Engineers CHAPTER 4Aluminum.
1 Pulping and Bleaching PSE 476/Chem E 471 Lecture #15 The Kraft Recovery Process Lecture #15 The Kraft Recovery Process.
Environmental Costs of Linear Societies October 9, 2006.
 Chemical reactions and physical processes on a large scale to convert raw materials into useful products.  Conditions of the reactions are controlled.
Aluminum. Assessment statement Describe and explain the production of aluminum by electrolysis of alumina in molten cyrolite. (Include the use of cyrolite.
Making Metals Name ______________________.
The Extraction Of Metals and The Preparation and Collection Of Non-Metals. Ashvini Jagassar- 5C Chemistry. Mr. Dookoo.
Chemistry in Industry and Technology Option C. Aluminium.
ALUMINIUM Extraction and uses. BACKGROUND Aluminium is the most common metal in the Earth’s crust. It comprises approximately 7.5% of the crust by mass.
Occurrence and Distribution of Metals
Metallurgy Mining of Ores Ore Concentration or Dressing Metal Extraction.
Cairo University Faculty of Engineering 2nd year Dept of Metallurgy.
Write down the Reactivity Series from Potassium to Gold.
The Extraction Of Metals
Extraction of Aluminium Aluminium is extracted using electrolysis because it is too reactive to be extracted using carbon.
Explain the process of electrolysis and its uses
The Drinking Water Treatment Process
Elemenets, Compounds and Mixtures
By: NN C.1.1  The main source of Iron is Iron Ore.
ELECTROLYSIS Electrolysis is a method of using a direct electric current (DC) to drive an otherwise non- spontaneous chemical reaction. Electrolysis is.
Australian Aluminium Teacher Guide Some links may not work on the web version Please see in class for details Mr G.
The purpose of electrolysis is to split up ionic compounds using electricity to produce useful products. Electrolysis is used a lot in industry and is.
Application of Electrolytic Cells Lesson 11.
The Weathering Product Minerals ©2010 Dr. B. C. Paul Credit is given particularly to the following sources, USGS, Mapofworld.com,
Alcoa’s Response to Climate Change Lee Califf Director, Government Affairs.
Mineral Resources II By: Jhulia Mariz C. Sta. Maria.
Aluminum Metal of the 21st Century.
EXTRACTIVE METALLURGY OF ALUMINIUM Intro: Aluminium is the most abundant metal in Earth. It occurs in nature in the form of aluminium oxide and other combined.
Making aluminium.
Electrolysis Noadswood Science, 2012.
© KCL. WCED. PENTECH Metals from rocks 1 LIST the materials that these means of transport are made from. DECIDE on the one material used in the manufacture.
Aluminium Extraction and Uses.
Revision lesson.  Metals found in the ground are normally found as a METAL ORE – combined with other elements in compounds  Metals found on their own.
Extracting metals. Methods of extracting metals The Earth's crust contains metals and metal compounds such as gold, iron oxide and aluminium oxide, but.
IGCSE CHEMISTRY SECTION 5 LESSON 4. Content The iGCSE Chemistry course Section 1 Principles of Chemistry Section 2 Chemistry of the Elements Section 3.
IGCSE CHEMISTRY SECTION 5 LESSON 1. Content The iGCSE Chemistry course Section 1 Principles of Chemistry Section 2 Chemistry of the Elements Section 3.
Chapter 9 Section 1 Elements Question of the Day What do gold, iron, and aluminum have in common? What do oxygen, neon, and sulfur have in common? How.
LIMESTONE Outcomes The reactions of limestone How cement and concrete are made.
© British Sugar 2010 Inside a sugar factory Learning objective: To understand the key stages in the production of sugar.
 Fossil fuel: the remains of ancient organisms that changed into coal, oil, or natural gas  Most of the energy that we use comes from fossil fuels 
Aluminium Extraction and Uses WaSwimvCGA8.
Topic 3 Metals and their uses. Extracting metals Metals are found in the Earth’s crust They are often chemically combined with other elements – this is.
Metals.
C5 Revision.
Extracting metals.
Learning objective: demonstrate electrolysis as the decomposition of a molten salt by an electric current see patterns in the changes at the electrodes.
Extraction of Aluminum By Peter Bassett and Ben Reading-Thompson.
Alcoa Kwinana – 50 Years of Operation Tim Maclean – Refinery Manager 1 4 November 2013.
Some metals react with;
Mixtures What is a mixture?
The Extraction Of Metals 1
Metals and Metallurgy.
Presentation on Chemistry
Extraction from Dolomite CaMg(CO3)2 and Magnesite Ore MgCO3.
Extraction of metals.
Chemistry 4: Chemical Changes
Presentation transcript:

Mining in Western Australia

The Western Australian mining industry is the largest and most diversified resource industry in Australia. The state encompasses about one-third of the Australian continent and includes rich mineral resources including iron ore,, diamonds, bauxite, uranium, gold, coal and mineral sands As of May 2007, there were 560 commercial mineral projects underway, including 1,222 operating mine sites and 171 operational processing plants. In , Western Australia accounted for 43% of sales and service income for the total Australian mining sector (all minerals, including oil and gas), followed by Queensland at 24%; New South Wales and the Australian Capital Territory contributed 16% of the total. Total revenues were A$ 23.9 billion in the same period. In the Western Australian resources sector accounted for 50% of Australia's total value of mineral and petroleum sales, 67% of Australia's oil and condensate production production, 50% of Australia's mineral production and 31% of Australia's total merchandise exports

Since the early 1900's, the Darling Ranges in Western Australia had been thought to contain considerable deposits of bauxite. However it was not until 1957, following exploration by Western Mining Corporation (now WMC Resources Limited) that these deposits were confirmed, prompting the formation of a joint-venture company to develop an integrated alumina industry. The Aluminium Company of America (now Alcoa Inc.) became a partner, and in 1961 the new venture was granted a 12,619 sq km bauxite mining lease in the Darling Ranges. Alcoa's first mine, at Jarrahdale, began operations in 1963 and for 35 years, until its closure in 1998, was the only source of supply for Alcoa's alumina refinery at Kwinana. During that long partnership, the Jarrahdale mine provided 168 million tonnes of bauxite from which 44.6 million tonnes of alumina were produced. Today, Alcoa has two bauxite mines in Western Australia, at Huntly and Willowdale. The Huntly mine, established in the early 1970's to supply the Pinjarra refinery, now also supplies the ore for Kwinana. This expanded capacity makes Huntly the biggest bauxite mine in the world. The Willowdale mine was established in 1984 and supplies Alcoa's Wagerup refinery.

Caring for the future Alcoa leads the world in mine rehabilitation. Self-sustaining jarrah forest eco-systems now flourish where Alcoa once mined bauxite in Western Australia. A section of this rehabilitated forest at Jarrahdale is today enjoyed by recreational mountain bikers, using designated cycle tracks and riding bikes made from aluminium. Find out more about Alcoa's Award Winning Biodiversity Rehabilitation

Bauxite is washed, ground and dissolved in caustic soda (sodium hydroxide) at high pressure and temperature. The resulting liquor contains a solution of sodium aluminate and undissolved bauxite residues containing iron, silicon, and titanium. These residues sink gradually to the bottom of the tank and are removed. They are known colloquially as "red mud". aluminum.org/production/refining/index.html The clear sodium aluminate solution is pumped into a huge tank called a precipitator. Fine particles of alumina are added to seed the precipitation of pure alumina particles as the liquor cools. The particles sink to the bottom of the tank, are removed, and are then passed through a rotary or fluidised calciner at 1100°C to drive off the chemically combined water. The result is a white powder, pure alumina. The caustic soda is returned to the start of the process and used again. More information about the Chemistry of the Process is available.

The Bayer process involves four steps: digestion, clarification, precipitation, and calcination. In the first step, bauxite is ground, mixed with a solution of caustic soda (sodium hydroxide) and pumped into large pressure tanks called digesters, where the ore is dissolved under steam beat and pressure. The sodium hydroxide reacts with the hydrated aluminium oxide (Al 2 O 3 3H 2 O or Al 2 O 3 H 2 O) of bauxite to form a saturated solution of sodium aluminate (Na[Al(OH)] 4 ); insoluble impurities, called red mud because of their iron oxide content, settle to the bottom. During clarification, the mixture is passed through a series of pressurereducing tanks (called blow-off tanks) and filter presses. Filters catch the red mud, which, except at plants where lower grade ores are refined, is discarded.

A resultant green liquor passes through filters into cooling towers (beat exchangers) and then into tall, silo-like precipitators. Sizable amounts of hydrated alumina (Al 2 O 3 3H 2 O) crystals are added to the solution in the precipitators as "seeding" to hasten crystal Separation. The seed crystals attract other crystals and form groups physically heavy enough to settle out of solution. This precipitate of aluminium hydrate (Al(OH) 3 ) crystals is filtered out, washed to remove impurities, and heated in long, rotary kilns at temperatures in excess of 1800°F (980°C). Free water and water that is chemically combined or fluidized-bed calciners with the aluminium hydrate are driven off, leaving commercially pure alumina – or aluminium oxide – (Al 2 O 3 ) a superdry, fine white powder similar to sugar in appearance and consistency. It is still half aluminium and half oxygen by weight, bonded so firmly that neither chemicals nor heat alone can separate them.

Aluminium smelting In the smelting process, alumina undergoes electrolysis in electric reduction furnaces, commonly referred to as pots, to separate the aluminium and the oxygen. The process is known after its discoverers as the Hall-Heroult process. The pots are large, shallow steel tanks lines with carbon and connected electrically in series. In each pot an electric current flows from carbon anodes, through a molten bath containing alumina, to a carbon cathode lining, and then on to the next carbon anode in the next pot. The electric current forces the oxygen in the alumina to separate, and form with the carbon into carbon dioxide at the top of each furnace pot. The molten aluminium forms at the bottom. The aluminium is siphoned into larger holding furnaces where other impurities are removed and alloy elements such as magnesium, silicon or manganese are added. The molten aluminium is cast into various forms and sent to fabrication plants to be rolled or extruded (stretched) or to a foundry for casting. Over 90% of alumina is refined into aluminium.

Hall Heroult Process