Setup of 4D VAR inverse modelling system for atmospheric CH 4 using the TM5 adjoint model Peter Bergamaschi Climate Change Unit Institute for Environment.

Slides:



Advertisements
Similar presentations
Assimilation of radar data - research plan
Advertisements

Methane inversion from satellite, TRANSCOM meeting, Jena,12-15 May 2003 Inversion strategy 4D-var method adjoint model of TM3 CH4-only version has been.
Assimilation Algorithms: Tangent Linear and Adjoint models Yannick Trémolet ECMWF Data Assimilation Training Course March 2006.
The Inverse Regional Ocean Modeling System:
Incorporation of dynamic balance in data assimilation and application to coastal ocean Zhijin Li and Kayo Ide SAMSI, Oct. 5, 2005,
Inversion of coupled groundwater flow and heat transfer M. Bücker 1, V.Rath 2 & A. Wolf 1 1 Scientific Computing, 2 Applied Geophysics Bommerholz ,
An optimal estimation based retrieval method adapted to SEVIRI infra-red measurements M. Stengel (1), R. Bennartz (2), J. Schulz (3), A. Walther (2,4),
Inverse modelling of CO emissions J.-F. Müller and T. Stavrakou Belgian Institute for Space Aeronomy Avenue Circulaire 3, 1180 Brussels
Ibrahim Hoteit KAUST, CSIM, May 2010 Should we be using Data Assimilation to Combine Seismic Imaging and Reservoir Modeling? Earth Sciences and Engineering.
ECMWF CO 2 Data Assimilation at ECMWF Richard Engelen European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Many thanks to Phil Watts,
Estimation of daily CO 2 fluxes over Europe by inversion of atmospheric continuous data C. Carouge and P. Peylin ; P. Bousquet ; P. Ciais ; P. Rayner Laboratoire.
Methane inversion from satellite, TRANSCOM workshop, Jena, May 2003 Inverse modelling of methane sources and sinks using satellite observations Jan.
Estimating regional sources and sinks of CO 2 for North America Using NOAA-CMDL measurements and the TM5 model Wouter Peters, NOAA CMDL TRANSCOM May 13th,
Advanced data assimilation methods with evolving forecast error covariance Four-dimensional variational analysis (4D-Var) Shu-Chih Yang (with EK)
Page 1 The Construction and Use of Linear Models in Large-scale Data Assimilation Tim Payne Large-Scale Inverse Problems and Applications in the Earth.
Maximum Liklihood Ensemble Filter (MLEF) Dusanka Zupanski, Kevin Robert Gurney, Scott Denning, Milia Zupanski, Ravi Lokupitiya June, 2005 TransCom Meeting,
Tianfeng Chai 1,2, Alice Crawford 1,2, Barbara Stunder 1, Roland Draxler 1, Michael J. Pavolonis 3, Ariel Stein 1 1.NOAA Air Resources Laboratory, College.
Workshop QA/QC 2-3 Oct 2004 Copenhagen Comparing National GHG Inventories with Independent Estimates Including Inverse Monitoring Peter Bergamaschi, Frank.
Interpretation of station data with an adjoint Model Maarten Krol (IMAU) Peter Bergamaschi (ISPRA) Jan Fokke Meierink, Henk Eskes (KNMI) Sander Houweling.
Understanding the 3DVAR in a Practical Way
Ensemble Data Assimilation and Uncertainty Quantification Jeffrey Anderson, Alicia Karspeck, Tim Hoar, Nancy Collins, Kevin Raeder, Steve Yeager National.
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
1 ESA Noordwijk 20 Jan 2004 Frank Raes, Peter Bergamaschi, Hugh Eva, Alan Belward Institute for Environment and Sustainability Joint Research Centre European.
Computing a posteriori covariance in variational DA I.Gejadze, F.-X. Le Dimet, V.Shutyaev.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 MAP (Maximum A Posteriori) x is reduced state vector [SST(x), TCWV(w)]
CO over South America Modeling inter annual variability of biomass burning emissions Pim Hooghiemstra & Maarten Krol 28 November 2011 – TM meeting.
Results from the Carbon Cycle Data Assimilation System (CCDAS) 3 FastOpt 4 2 Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1 Heinrich Widmann 3, Thomas.
Assimilation of HF Radar Data into Coastal Wave Models NERC-funded PhD work also supervised by Clive W Anderson (University of Sheffield) Judith Wolf (Proudman.
Tbilisi, GGSWBS'14 Optimization for inverse modelling Ketevan Kasradze 1 Hendrik Elbern 1,2
Simulation Experiments for GEO-CAPE Regional Air Quality GEO-CAPE Workshop September 22, 2009 Peter Zoogman, Daniel J. Jacob, Kelly Chance, Lin Zhang,
Overview of Techniques for Deriving Emission Inventories from Satellite Observations Frascati, November 2009 Bas Mijling Ronald van der A.
Analysis of TraceP Observations Using a 4D-Var Technique
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
Research Vignette: The TransCom3 Time-Dependent Global CO 2 Flux Inversion … and More David F. Baker NCAR 12 July 2007 David F. Baker NCAR 12 July 2007.
INVERSE MODELING OF ATMOSPHERIC COMPOSITION DATA Daniel J. Jacob See my web site under “educational materials” for lectures on inverse modeling atmospheric.
Satellite-based inversion of NOx emissions using the adjoint of CMAQ Amir Hakami, John H. Seinfeld (Caltech) Qinbin Li (JPL) Daewon W. Byun, Violeta Coarfa,
Assimilating AIRNOW Ozone Observations into CMAQ Model to Improve Ozone Forecasts Tianfeng Chai 1, Rohit Mathur 2, David Wong 2, Daiwen Kang 1, Hsin-mu.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.
Deutscher Wetterdienst Vertical localization issues in LETKF Breogan Gomez, Andreas Rhodin, Hendrik Reich.
FastOpt Quantitative Design of Observational Networks M. Scholze, R. Giering, T. Kaminski, E. Koffi P. Rayner, and M. Voßbeck Future GHG observation WS,
INVERSE MODELING TECHNIQUES Daniel J. Jacob. GENERAL APPROACH FOR COMPLEX SYSTEM ANALYSIS Construct mathematical “forward” model describing system As.
Quality of model and Error Analysis in Variational Data Assimilation François-Xavier LE DIMET Victor SHUTYAEV Université Joseph Fourier+INRIA Projet IDOPT,
Weak Constraint 4DVAR in the R egional O cean M odeling S ystem ( ROMS ): Development and application for a baroclinic coastal upwelling system Di Lorenzo,
Quantifying the decrease in anthropogenic methane emissions in Europe and Siberia using modeling and atmospheric measurements of carbon dioxide and methane.
Implementation and Testing of 3DEnVAR and 4DEnVAR Algorithms within the ARPS Data Assimilation Framework Chengsi Liu, Ming Xue, and Rong Kong Center for.
Prepared by Dusanka Zupanski and …… Maximum Likelihood Ensemble Filter: application to carbon problems.
MIIDAPS Application to GSI for QC and Dynamic Emissivity in Passive Microwave Data Assimilation.
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
Error correlation between CO 2 and CO as a constraint for CO 2 flux inversion using satellite data from different instrument configurations Helen Wang.
FastOpt CAMELS A prototype Global Carbon Cycle Data Assimilation System (CCDAS) Wolfgang Knorr 1, Marko Scholze 2, Peter Rayner 3,Thomas Kaminski 4, Ralf.
RESULTS: CO constraints from an adjoint inversion REFERENCES Streets et al. [2003] JGR doi: /2003GB Heald et al. [2003a] JGR doi: /2002JD
Korea Institute of Atmospheric Prediction Systems (KIAPS) ( 재 ) 한국형수치예보모델개발사업단 Identical Twin Experiments for the Representer Method with a Spectral Element.
The assimilation of satellite radiances in LM F. Di Giuseppe, B. Krzeminski,R. Hess, C. Shraff (1) ARPA-SIM Italy (2) IMGW,Poland (3)DWD, Germany.
Comparison of adjoint and analytical approaches for solving atmospheric chemistry inverse problems Monika Kopacz 1, Daniel J. Jacob 1, Daven Henze 2, Colette.
Estimating emissions from observed atmospheric concentrations: A primer on top-down inverse methods Daniel J. Jacob.
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
AGU 2008 Highlight Le Kuai Lunch seminar 12/30/2008.
Carbon Cycle Data Assimilation with a Variational Approach (“4-D Var”) David Baker CGD/TSS with Scott Doney, Dave Schimel, Britt Stephens, and Roger Dargaville.
The Carbon Cycle Data Assimilation System (CCDAS)
Adjoint modeling and applications
Vertical localization issues in LETKF
Assimilating Tropospheric Emission Spectrometer profiles in GEOS-Chem
FSOI adapted for used with 4D-EnVar
Radiometer channel optimization for precipitation remote sensing
Hartmut Bösch and Sarah Dance
Inverse modeling of European sources:
Sarah Dance DARC/University of Reading
Off-line 3DVAR NOx emission constraints
Presentation transcript:

Setup of 4D VAR inverse modelling system for atmospheric CH 4 using the TM5 adjoint model Peter Bergamaschi Climate Change Unit Institute for Environment and Sustainability(IES) Joint Research Center Ispra, Italy Maarten Krol Institute for Marine and Atmospheric Research Utrecht, Netherlands

adjoint model forward model: tangent linear model (TLM): adjoint model: Linearisation of non-linear model transpose of TLM

TM5 adjoint model forward model: tangent linear model (TLM): adjoint model: TM5 is linear - slopes - limits: off - offline chemistry TM5 represents already tangent linear model TM5 adjoint: manual coding - transpose of each model operator - revert order of operators - provide passive, but required variables correctly (air mass) Linearisation of non-linear model transpose of TLM

adjoint model - applications efficient way to calculate full Jacobian matrix, if: number (obs) << number (parameters) 3-D back trajectories Systems with many observations AND many parameters: Minimization of cost function: 4D-VAR adjoint model Analytical solution of inverse problem Iterative approximation: for VERY complex systems (e.g. numerical weather prediction)

cost function parametersobservations Model prediction: Observation operator H observations Initial mixing ratio emission gradient of cost function

minimization [Bouttier and Courtier, 1999] dimension parameter space: TM5: ~1 E4 - 1 E5 (ECMWF(T511) : ~1 E 7 ) Minimisation algorithms: - M1QN3 [Gilbert, Lemarechal, 1995] - ECMWF conjugate gradient

4D VAR data assimilation system

gradient test alpha DJ1 DJ2 t 1-t example for 3 days integration - (1-t) is reaching ~ 1E-7 -> proof for correct coding of adjoint - slight deterioration for longer integration times (1E-4 for 45 days integration), due to numerical effects

test of 4DVAR system using synthetic observations Create synthetic observations: - station data - total columns "brute force inversion" (-> test of 4DVAR system performance rather than realistic simulation with expected real data) - Assume global availabiltity of column data, uncertainty 0.1 ppb - Assume very high uncertainty for emissions (emission x 1 E4)

4DVAR inversion using synthetic observations (global grid 6x4) Artificial increase of CH 4 emissions over Germany by 30 % -> a priori emissions 4D VAR inversion emission inventory used to create synthetic observations -> "true emissions"

4DVAR inversion using synthetic observations (global grid 6x4) Artificial increase of CH 4 emissions over Germany by 30 % -> a priori emissions 4D VAR inversion emission inventory used to create synthetic observations -> "true emissions" 4D VAR inversion returns inventory very close to "true emission inventory'

4DVAR inversion - analysis increments (global grid 6x4) 4D VAR inversion artificial increase a priori - SYNOBS a priori - a posteriori

4DVAR inversion using synthetic observations (European zoom 3x2) emission inventory used to create synthetic observations -> "true emissions" Artificial increase of CH 4 emissions over Germany by 30 % -> a priori emissions 4D VAR inversion 4D VAR inversion returns inventory very close to "true emission inventory'

4DVAR inversion - analysis increments (European zoom 3x2) 4D VAR inversion artificial increase a priori - a posteriori a priori - SYNOBS

4DVAR inversion using synthetic observations (European zoom 1x1) emission inventory used to create synthetic observations -> "true emissions" Artificial increase of CH 4 emissions over Germany by 30 % -> a priori emissions 4D VAR inversion 4D VAR inversion returns inventory very close to "true emission inventory'

4DVAR inversion - analysis increments (European zoom 1x1) 4D VAR inversion artificial increase a priori - SYNOBS a priori - a posteriori

minimisation algorithm (M1QN3) Good convergence within ~20 - ~100 iterations Convergence dependent on: - preconditioning - parameter set - observations - length of assimilation period

Conclusions demonstration for correct coding of TM5 adjoint (gradient test) setup of 4DVAR system for flexible incorporation various types of observational data (monitoring stations, satellite measurements) test of 4DVAR system using synthetic observations -> recovery of "true emissions" conclusions

Next steps finalisation of 4DVAR framework (many details still to be improved) further tests with synthetic observations (test of system performance, test of sampling strategies) minimisation algorithms / preconditioning parameter covariances (correlations) a posteriori uncertainty reduction estimates ……. real observations longer assimilation periods (-> meteo preprocessing) next steps