Presentation is loading. Please wait.

Presentation is loading. Please wait.

Results from the Carbon Cycle Data Assimilation System (CCDAS) 3 FastOpt 4 2 Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1 Heinrich Widmann 3, Thomas.

Similar presentations


Presentation on theme: "Results from the Carbon Cycle Data Assimilation System (CCDAS) 3 FastOpt 4 2 Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1 Heinrich Widmann 3, Thomas."— Presentation transcript:

1 Results from the Carbon Cycle Data Assimilation System (CCDAS) 3 FastOpt 4 2 Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1 Heinrich Widmann 3, Thomas Kaminski 4 & Ralf Giering 4 1

2 Methodology sketch CCDAS – Carbon Cycle Data Assimilation System CO 2 station concentration Biosphere Model: BETHY Atmospheric Transport Model: TM2 Misfit to observations Model parameterFluxes Misfit 1 Forward Modeling: Parameters –> Misfit Inverse Modeling: Parameter optimization

3 CCDAS set-up Background fluxes: 1.Fossil emissions (Marland et al., 2001 und Andres et al., 1996) 2.Ocean CO 2 (Takahashi et al., 1999 und Le Quéré et al., 2000) 3.Land-use (Houghton et al., 1990) Transport Model TM2 (Heimann, 1995)

4 BETHY (Biosphere Energy-Transfer-Hydrology Scheme) GPP: C3 photosynthesis – Farquhar et al. (1980) C4 photosynthesis – Collatz et al. (1992) stomata – Knorr (1997) Plant respiration: maintenance resp. = f(N leaf, T) – Farquhar, Ryan (1991) growth resp. ~ NPP – Ryan (1991) Soil respiration: fast/slow pool resp., temperature (Q 10 formulation) and soil moisture dependant Carbon balance: average NPP =  average soil resp. (at each grid point)  <1: source  >1: sink  t=1h  t=1day  lat,  lon = 2 deg

5 Methodology Minimize cost function such as (Bayesian form): where - is a model mapping parameters to observable quantities - is a set of observations - error covariance matrix  need of (adjoint of the model)

6 Calculation of uncertainties Error covariance of parameters = inverse Hessian Covariance (uncertainties) of prognostic quantities

7 Fate of terrestrial C under climate change Including biomass burning Uncertainties of prognostic (2000-2004) net fluxes (still calculating) Improvements and further applications since Rayner et al. 2005 Improved carbon balance Improved spin-up of fast soil pool Weaker prior constraint on parameters

8 Seasonal cycle of CO 2 at Barrow, Alaska The red line is the simulation of R05 while the green line Is the improved simulation. Observations are shown by diamonds.

9 Global atmospheric growth rate Weighted sum of Mauna Loa (0.75) and South Pole (0.25) concentrations

10 Parameters I 3 PFT specific parameters (J max, J max /V max and  ) 18 global parameters 56 parameters in all plus 1 initial value (offset)

11 Parameters II Relative Error Reduction

12 Some values of global fluxes 1980-2000 (prior) 1980-1999 R05 New GPP NPP Fast Resp. Slow Resp. 135.7 68.18 53.83 14.46 134.8 40.55 27.4 10.69 144.7 64.92 25.7 36.9 NEP-0.112.452.32 Value Gt C/yr

13 Carbon Balance net carbon flux 1980-2000 gC / (m 2 year) Uncertainty in net carbon flux 1980-2000 gC / (m 2 year)

14 Terrestrial C cycling under climate change

15 Off-line model for prognostic slow pool Some equations: P: slow pool, r F : fast resp., f S : allocation fast to slow pool  : soil moisture T a : air temperature Finding  : Assume P(t = 1979) Adjust  to yield NEP(t = 1979-200)  iterative process

16 Initial slow pool size

17 Decadal mean global NEP 1980-2090 Red lines indicate simulations with climate change and black lines with no climate change. Solid lines indicate simulations with optimized parameters and broken lines with a priori parameters.

18 Including biomass burning A biomass burning climatology (monthly resolved) based on the v. d. Werf data is used as a yearly basis function for the optimisation Land is divided into the 11 TransCom-3 regions That means: 11 regions * 21 yr = 231 additional parameters van der Werf et al., 2004, Continental-Scale Partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña Period. Science, 303, 73-76.

19 Parameters revisited ParameterPriorNo fireInc. fire f R,leaf c cost f S  Q 10,f Q 10,s  f 0.4 1.25 0.2 1.0 1.5 0.22 1.09 0.32 0.63 2.06 1.31 8.7 0.3 1.23 0.78 0.34 2.08 1.46 7.35

20 Global fluxes revisited PriorNo fireInc. fire GPP NPP Fast Resp. Slow Resp. Fire 135.7 68.18 53.83 14.46 144.7 64.92 25.7 36.9 143.9 57.89 13.26 39.28 2.96 NEP-0.112.322.39 Mean value 1980-1999 Gt C/yr

21 Global growth rate revisited Calculated as: Atmospheric CO 2 growth rate observed no fire with fire

22 blue barsCCDAS red barsv. d. Werf et al. Interannual variability in biomass burning estimate year Gt C/yr

23 Conclusions & Outlook Prognostic future net carbon flux under climate change: more productive & more sensitive More processes: fire (‘weak constraint’ as a first step) More components: ocean (not-shown, but “free” optimization indicates no big changes, ideally also process-based) Prognostic uncertainties on net carbon flux for 2000- 2004: calculations finished by now.. More data: inventories, regional inversions and budgets, satellite CO 2 columns, isotopes, O 2 /N 2


Download ppt "Results from the Carbon Cycle Data Assimilation System (CCDAS) 3 FastOpt 4 2 Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1 Heinrich Widmann 3, Thomas."

Similar presentations


Ads by Google