Godefroy Leménager 1, F Pisanello 1,2, L Martiradonna 3, P Spinicelli 1, A Fiore 2, J-P Hermier 4, L Manna 5, R Cingolani 2,3, E Giacobino 1, M De Vittorio.

Slides:



Advertisements
Similar presentations
Opto-Electronics & Materials Laboratory Li-Jen Chou ( ) Investigations on low-dimensional nanostructures: synthesis, characterization, applications and.
Advertisements

Quantum optical effects with pulsed lasers
Tunable Surface Assembly of Gold Nanorods for Biosensor Applications
UDIM09, Ischia island, Naples, Italy 1 Valer Tosa National Institute R&D Isotopic Molecular Technologies, Cluj-Napoca, Romania Macroscopic Effects in Single.
Femtosecond lasers István Robel
Size-dependent recombination dynamics in ZnO nanowires
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
Phonon coupling to exciton complexes in single quantum dots D. Dufåker a, K. F. Karlsson a, V. Dimastrodonato b, L. Mereni b, P. O. Holtz a, B. E. Sernelius.
Lorenzo O. Mereni Valeria Dimastrodonato Gediminas Juska Robert J. Young Emanuele Pelucchi Physical properties of highly uniform InGaAs.
Strong coupling between Tamm Plasmon and QW exciton
Giant Rabi splitting in metal/semiconductor nanohybrids
SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.
1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Center for Advanced Materials and Smart Structures WEB: Pulsed Laser Deposition Assisted Fabrication and Characterization of the.
COST Action MP0805 Meeting, Istanbul, April 12-13, 2010 University of Nottingham, UK Effects of Hydrogen Irradiation on Deep Levels in MBE Grown Dilute.
The Creation of Single Photon Sources By: Joseph Cosentino, Matthew Farkas, David Kim, Yuntao Ma, and Chris Miller. Quantum B Team Lab Instructor: Luke.
Quantum Dot Bioconjugates for Imaging, Labelling and Sensing By: Igor L. Medintz, H. Tetsuo Uyeda, Ellen R. Goldman, and Hedi Mattoussi Nature Materials,
Optics of Nanostructures: Science, Technology, Applications Sergey V. Gaponenko Institute of Molecular and Atomic Physics National Academy of Sciencs of.
GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
TWO-PHOTON ABSORPTION IN SEMICONDUCTORS Fabien BOITIER, Antoine GODARD, Emmanuel ROSENCHER Claude FABRE ONERA Palaiseau Laboratoire Kastler Brossel Paris.
Single Photon Source for Quantum Communication Sarah Walters, Meng-Chun Hsu, Hubert Zal, Pierce Morgan.
Studies of Minority Carrier Recombination Mechanisms in Beryllium Doped GaAs for Optimal High Speed LED Performance An Phuoc Doan Department of Electrical.
Quantum Dot NanoCavity Emission Tuned by a Circular Photonic Crystal Lattice CNR-INFM Lecce (Italy) National Nanotechnology Lab Web:
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Single Quantum Dot Optical Spectroscopy
Quantum Dots. Optical and Photoelectrical properties of QD of III-V Compounds. Alexander Senichev Physics Faculty Department of Solid State Physics
Time-Correlated Single Photon Counting (TCSPC) Scott Thalman Brigham Young University Advisor: Dr. John Colton Dr Haeyeon Yang USU Physics Help from Mitch.
Optical trapping of quantum dots in air and helium gas KAWAI Ryoichi Ashida Lab. 2013/10/30 M1 colloquium.
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Single Photon Emitters and their use in Quantum Cryptography Presentation by: Bram Slachter Supervision: Dr. Ir. Caspar van der Wal.
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Generation of quantum states of light by a semiconductor quantum dot.
Charge Carrier Related Nonlinearities
1 Materials Science Laboratory, Department of Physics, College of Science, Az Zulfi, Majmaah University, KSA.
Optical Characterization methods Rayleigh scattering Raman scattering transmission photoluminescence excitation photons At a glance  Transmission: “untouched”
A. Imamoglu Department of Electrical and Computer Engineering, and Department of Physics, University of California, Santa Barbara, CA Quantum Dot.
Joel Q. Grim 2014 Continuous-wave pumped lasing using colloidal CdSe quantum wells Joel Q. Grim, Sotirios Christodoulou, Francesco.
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
Quantum Optics with single Nano-Objects. Outline: Introduction : nonlinear optics with single molecule Single Photon sources Photon antibunching in single.
Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P.
Temperature behaviour of threshold on broad area Quantum Dot-in-a-Well laser diodes By: Bhavin Bijlani.
Basic Science of Nanomaterials (Ch. 11)
Itoh Laboratory Masataka Yasuda
Electrochromic Nanocrystal Quantum Dots Prof. Philippe Guyot-Sionnest’s group (Univ. of Chigaco) : 1. Electrochromic Nanocrystal Quantum Dots, Science.
4.12 Modification of Bandstructure: Alloys and Heterostructures Since essentially all the electronic and optical properties of semiconductor devices are.
Alberto Amo, C. Adrados, J. Lefrère, E. Giacobino, A. Bramati
Form Quantum Wires and Quantum Dots on Surfaces
Substrate dependence of self-assembled quantum dots
From an Atom to a Solid Photoemission spectra of negative copper clusters versus number of atoms in the cluster. The highest energy peak corres- ponds.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
II-VI Semiconductor Materials, Devices, and Applications
Optical gain in 2D solution processable CdSe nanoplatelets
ZnO and Mg x Zn 1-x O are technologically promising materials for luminescence applications in the ultraviolet (UV) range. ZnO has a bandgap ~3.3 eV, while.
Small internal electric fields in quaternary InAlGaN heterostructures S.P. Łepkowski 1, P. Lefebvre 2, S. Anceau 1,2, T. Suski 1, H. Teisseyre 1, H. Hirayama.
ACADEMIC AND SCIENTIFIC WORK ROBERTO PINEDA GÓMEZ
E-MRS Spring Meeting 2013, Strasbourg, France
Platelet-in-Box Colloidal Quantum Wells: Heteronanoplatelets
SREELAKSHMI S S3 EC ROLL NO:55
A. Bramati M. Romanelli E. Giacobino
Optical and Terahertz Spectroscopy of CdSe/ZnS Quantum Dots
Quantum Dot Lasers ASWIN S ECE S3 Roll no 23.
Carbon Nanotube Diode Design
Student: Chandler Bernard Mentor: Dr. Joseph Herzog (PHYS)
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
Project 1.4: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals Saeed Younis.
High-efficiency green light-emitting diodes
Atilla Ozgur Cakmak, PhD
Presentation transcript:

Godefroy Leménager 1, F Pisanello 1,2, L Martiradonna 3, P Spinicelli 1, A Fiore 2, J-P Hermier 4, L Manna 5, R Cingolani 2,3, E Giacobino 1, M De Vittorio 2,3 and A Bramati 1 1 Laboratoire Kastler Brossel, Paris, France. 2 National Nanotechnology Laboratory, Lecce, Italy. 3 Istituto Italiano di Tecnologia, Arnesano (Lecce). 4 Groupe d'étude de la Matière Condensée, Versailles, France. 5 Istituto Italiano di Tecnologia, Genova. ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Why single photon sources? Quantum Information Quantum computation Polarized single photon sources are usually needed Several keys distribution algorithms are based on photon polarization, such as BB84 or B92 Bennett and Brassard, Int. Conf. on Computers, Systems and Signal Processing, India, December 10–12, 1984, p Quantum error corrections Quantum cryptography

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Why single emitter florescence for single photon sources? LaserAttenuated laser Pulsed Laser Single emitter florescence Ec-Ev hν > Ec-Ev

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Epitaxial or colloidal artificial atoms? Higher distance among allowed energy states in conduction and valence bands: intense emission also at room temperature Broad tunable emission range Low costs and versatile synthesis procedures Blinking Not collimated and not polarized emission Colloidal SPSs [2] P. Michler et al., Nature 406, 968 (2000).Epitaxial growth SPSs A. Tribu et al., Nano Lett. 8, 4326 (2008). Y. Arakawa et al., Nat. Mat. 5, 887 (2006). Stranski-Krastanow growth Metal-Organic Chemical Vapor Deposition (MOCVD) /Molecular Beam Epitaxy (MBE) efficient electrical injection by p-n doping of the surrounding heterostructure Expensive techniques required Room-temperature emission from single QD difficult to be achieved due to phonons energy comparable with allowed energy levels distance

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Linear Dipole Moment Colloidal Nanocrystals Engineering B. Malher et al., Nature Mat. 7, 659 (2008). CdS CdSe Blinking suppression CdSe CdS Shell Core High quantum yield Increasing spontaneous emission rate A. Qualtieri et al., New J. Phys 11, (2009).

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Antonio Qualtieri et al 2009 New J. Phys Nanocristals in the cavity Nanocristals not in the cavity Increasing spontaneous emission rate

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Linear Dipole Moment Colloidal Nanocrystals Engineering B. Malher et al., Nature Mat. 7, 659 (2008). CdS CdSe Blinking suppression CdSe CdS Shell Core High quantum yield Increasing spontaneous emission rate A. Qualtieri et al., New J. Phys 11, (2009).

HRTEM Images G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Seeded growth colloidal dot in a rod Carbone et al., Nano Letters 7, 2942 (2007).

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca How to characterize a polarized single photon source? Picoseconds pulsed laser =404nm 1.Coincidences histogram 2.Delay between photons and laser pulse Acquisition card Polarized Hanbury Brown and Twiss interferometer /2 plate Emission  = 595nm

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Luminescence topography [photons/s] 0 y x 0 5um 0

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Single photon source ? F. Pisanello et al., Appl. Phys. Let. 96, (2010) F. Pisanello et al., Superlattices and Microstructures 47, 165 (2009)

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Photoluminescence intensity

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca θ=0° Photoluminescence intensity θ=90°

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Properties of the polarized emission F. Pisanello et al., Appl. Phys. Let. 96, (2010)

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Focus Dipole like EmitterOmnidirectional Emitter X. Brokman Phd Thesis UPMC (2004) Orientation of the Dot in Rod

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Focalised picture Defocalised picture Orientation of the Dot in Rod F. Pisanello et al., Appl. Phys. Let. 96, (2010)

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Orientation of the Dot in Rod F. Pisanello et al., Appl. Phys. Let. 96, (2010)

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Device

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Device E E L Carbone et al. Nano Lett., 2007, 7 (10), pp 2942–2950

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Conclusion The polarization properties of a single, isolated dot in rod are presented We show that a single dot in a rod is a polarized single photon source The degree of polarization of the emission around 80% F. Pisanello et al., Appl. Phys. Let. 96, (2010) We show the possibility to identify the orientation of a single Dot-in-Rod We propose a strategy to implement the sender site in a device

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Work in progress Implement the device proposed Analysis of different lengths of cores and shells Spectrum measurements Coherence time measurements

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Thanks to : Antonio Qualtieri Riccardo Messina Gianmichele Epifani Dr. Giuseppe Patera Dr. Giovanni Morello Gianvito Caputo Dr. Alessandro Massaro Dr. Vittorianna Tasco Dr. Maria Teresa Todaro

G. Leménager : ROOM TEMPERATURE POLARIZED SINGLE PHOTON SOURCE WITH A COLLOIDAL DOT IN ROD. PLMCN 10, 12/16 avril 2010 Cuernavaca Thank you for your attention