Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Lecture #1 Passives – Extra.

Slides:



Advertisements
Similar presentations
Rama Arora, Physics Department PGGCG-11, Chandigarh
Advertisements

ENE 428 Microwave Engineering
Heat Generation in Electronics Thermal Management of Electronics Reference: San José State University Mechanical Engineering Department.
The L-Network L-networks are used to match the output impedance of one circuit to the input of another. Rsource < Rload, 1< Q < 5 Rsource > Rload, 1
EKT 441 MICROWAVE COMMUNICATIONS
ENE 428 Microwave Engineering
Design of a Low-Noise 24 GHz Receiver Using MMICs Eric Tollefson, Rose-Hulman Institute of Technology Advisor: Dr. L. Wilson Pearson.
EMLAB 1 4. Linear wire antenna. EMLAB 2 Simulation of dipole antennas.
Characterization of Circuit Components Using S-Parameters Chapter 1.
RF Circuit Design Chris Fuller /7/2012.
On-chip inductance and coupling Zeynep Dilli, Neil Goldsman Thanks to Todd Firestone and John Rodgers for providing the laboratory equipment and expertise.
Project by Santiago Yeomans, Chad Cummins, Gboyega Adeola Guitar Signal Transmitter.
Switching Power Supply Component Selection
Presented by Paul Kasemir and Eric Wilson
RF Packaging Jason Shin Fall 2007: ECEN 5004 Fundamentals of Microsystems Packaging Graduate Presentation.
Microwave Interference Effects on Device,
Principles of Electronic Communication Systems
Chapter 6 FM Circuits.
Dual-frequency Antenna Design for RFID Application
RF MEMS devices Prof. Dr. Wajiha Shah. OUTLINE  Use of RF MEMS devices in wireless and satellite communication system. 1. MEMS variable capacitor (tuning.
Chapter Two: Radio-Frequency Circuits. Introduction There is a need to modulate a signal using an information signal This signal is referred to as a baseband.
Microwave Amplifier Design
ECE 424 – Introduction to VLSI Design
Microwave Integrated Circuits (MIC)
Microwave Integrated Circuits
BY MD YOUSUF IRFAN.  GLOBAL Positioning System (GPS) receivers for the consumer market require solutions that are compact, cheap, and low power.  This.
General Licensing Class G7A – G7C Practical Circuits Your organization and dates here.
Microwave Amplifier Design Blog by Ben (Uram) Han and Nemuel Magno Group 14 ENEL 434 – Electronics 2 Assignment
TYPICALLY REALIZABLE COMPONENTS IN MICS Passive components Low pass,high pass Band pass,band stop with medium to large bandwidths Directional couplers.
Microwave Amplifier Design Blog by Ben (Uram) Han and Nemuel Magno Group 14 ENEL 434 – Electronics 2 Assignment
Microwave Filters Filters allow some frequencies to go through while block the remaining In receivers, the system filters the incoming signal right after.
General Licensing Class Oscillators & Components Your organization and dates here.
1/17 PASSIVE ELECTRONIC COMPONENTS AND CIRCUITS Lecture 1 Introduction.
1/39 Passive components and circuits - CCP Lecture 11.
Discontinuities of Microstrip Line
ENE 490 Applied Communication Systems Lecture 3 Stub matching, single- and two-port networks DATE: 27/11/06.
Introduction to SYSTEM-ON-PACKAGE(SOP) Miniaturization of the Entire System © 2008 CHAPTER 5.
PCB Layout Introduction
Lecture-2 Microwave Engineering Instructor: Athar Hanif.
ECE & TCOM 590 Microwave Transmission for Telecommunications Introduction to Microwaves January 29, 2004.
Introduction  The fundamental passive linear circuit elements are the  resistor (R),  capacitor (C)  inductor (L).  These circuit.
McGraw-Hill © 2008 The McGraw-Hill Companies, Inc. All rights reserved. Principles of Electronic Communication Systems FM Circuits.
Sanae Boulay, Limelette, Nov 05 th 20091/20 S. Boulay, B. Boudjelida, A. Sharzad, N. Ahmad, M. Missous Novel Ultra Low Noise Amplifiers based on InGaAs/InAlAs.
Ph.D. Candidate: Yunlei Li Advisor: Jin Liu 9/10/03
Thick-Film Multilayer Microwave Circuits for Wireless Applications
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #8. VLSI Components in CMOS Technology  Introduction  Resistor Design  Capacitor Design  Inductor Design 
Chapter 4: Secs ; Chapter 5: pp
ENE 428 Microwave Engineering
LUMPED ELEMENTS ECB 3211 – RF & Microwave Engineering Module - I SOURCE: RF & Microwave Handbook, CRC Press 1.
December 1997 Circuit Analysis Examples 걼 Hairpin Edge Coupled Filter 걼 Bipolar Amplifier 걼 Statistical Analysis and Design Centering 걼 Frequency Doubler.
Passive Integrated Elements Robert H. Caverly, Villanova University The creation of these notes was supported by a Grant from The National Science Foundation.
EKT 314/4 WEEK 7 : CHAPTER 3 SIGNAL CONDITIONING ELECTRONIC INSTRUMENTATION.
J.PRAKASH.  The term power quality means different things to different people.  Power quality is the interaction of electronic equipment within the.
P RESENTATION ON MONOLITHIC MICROWAVE INTEGRATED CIRCUITS PASSIVE COMPONENTS SUBMITTED BY:- AJAY KAUSHIK(088/ECE/09 ) NAMAN KUMAR(082/ECE/09 )
Principles of Electronic Communication Systems. Chapter 6 FM Circuits.
Non Ideal Behavior of Components, Copyright F. Canavero, R. Fantino Licensed to HDT - High Design Technology NIB_2 Course outline.
Hartley Oscillator Circuit Theory Working and Application
ELEC 401 MICROWAVE ELECTRONICS Lecture on Matching
Millimeter Wave IC Design
Basic Circuit Components
A High-Dynamic-Range W-band
Basic MOS Amplifiers: DC and Low Frequency Behavior
Day 2 I_DC RFin RFout Bias De-coupling Circuit Lab5: Device Biasing.
4. Linear wire antenna.
Lab3: GaAs Process And Devices
General Licensing Class
ENE 429 Antenna and Transmission lines Theory
ENE 429 Antenna and Transmission lines Theory
ENE 428 Microwave Engineering
Presentation transcript:

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Lecture #1 Passives – Extra

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 RF Inductors Printed Spiral Inductor Straight narrow wire or PCB track Coil on former with slug tuner Coil

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 10 MHz – 40 GHz conical inductor, ~ 2.2 mm long Full of EM absorber VERY LOSSY!!

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 RF Capacitors 4p7 Ceramic Polystyrene Polyester Trimmer Surface mount Single layer chip

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 “Opti-Cap TM Broadband SMD Capacitor DC to Light” Dielectric Laboratories Inc. Ultra-Broadband DC Blocking Capacitors Small capacitor in parallel with large capacitor, Plus resistive damping of resonances

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 RF Resistors

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Grounding methods: (a) through-substrate via-holes, (b) wrap-around grounding and (c) bond-wires MIM capacitor Metalised lower ground plane GaAs substrate Via hole Metalised lower ground plane GaAs substrate MIM capacitor Gold-plated chip carrier GaAs substrate (a)(b) (c)

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Through-substrate vias are difficult to realise with brittle substrates (e.g. silicon, GaAs, alumina, etc.) and have reliability implications. Up to ~20 GHz, they can be modelled with a simple series R-L circuit. Wrap-around grounds have reduced inductance. However, they require an edge metalisation process and they still impose severe restrictions on the topology of the circuit. Bond wires have relatively high inductance (e.g. ~1 nH/mm with 25  m diameter wires). Therefore, multiple wires are needed, which must be kept as short as possible. Moreover, they impose severe restrictions on the topology of the circuit, since they have to be located near the edge of the MIC. This type of grounding can be modelled with a fringe capacitance in parallel with the inductor.

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Simplified Bond Wire Modelling Given a gold bond wire, having a bulk DC resistivity of n .m and 25  m diameter, calculate the skin depth, the internal HF inductance per millimetre and HF resistance per millimetre at 3.6 GHz. Ignoring a factor that accounts for the shape (length over diameter) of the wire! a factor of ~ 40 too low about right

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 © 2001 Amkor Technology, Inc.

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Bare-chip device and typical parasitics Microstrip Hole through to ground, with gold plated chip carrier insert g d s

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Interconnect stack in the Intel 130nm P860 technology

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授  There are three quite distinct circuit design techniques, the choice of which largely depends on the operating frequency of the circuit  There is inevitably some overlap of each approach's useful frequency range of application, and the techniques may often be blended together in the same design  “all-transistor” techniques  lumped-element techniques  distributed-element techniques Circuit Design Techniques

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 All-transistor Techniques  circuits tend to use small device peripheries so that the resulting small input and output capacitances do not unduly affect performance (e.g. operational amplifiers)  usable up to at least 5 GHz, and such high frequency of operation is achieved largely because of the low capacitance, rather than the use of microwave design techniques  the design of these circuits at GHz frequencies requires tremendous design skill and experience. This is available in the silicon industry, but generally not in GaAs industry  the major advantage of active techniques is their high packing density, leading to competitively priced products, but at the expense of increased DC power consumption

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 'all-transistor' circuit: 2 GHz MMIC band-pass filter (employing 3 active inductors)

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 'all-transistor' active inductors (equivalent Q-factor of 15,000)

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 2 GHz MMIC active band-pass filter frequency performance

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 The advantages of active filters are: 1.small size and mass 2.low cost in mass production 3.high selectivity 4.easy integration with amplifiers, mixers, oscillators 5.potential for electronic tuning. Drawbacks associated with active techniques: 1.poor noise figure 2.non-linearity 3.danger of oscillation 4.complex bias circuitry and significant DC power 5.sensitivity to fabrication tolerances 6.environmental sensitivity

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Pre-driver and Receiver Applications

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 SiGe HBT 80 Gb/s Distributed Amplifier, chip size = 1.3 x 1.7 mm 2 O. Wohlgemuth et al. (Lucent), EuMC 2003

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Lumped-element Techniques  for higher operating frequencies, the transistor’s input and output capacitances must be accounted for  lumped-element matching networks (using spiral inductors and overlay capacitors) provide the best solution at frequencies below 20 GHz. Lumped-element circuit: 1 to 2 GHz MMIC feedback amplifier (employing L-C components)

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 A spiral transformer Marchand balun (0.7 x 1.5 mm 2 ) Port 2 Port 1 Port 3

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Lumped-distributed equivalent of a quarter-wave transmission line CC Z 0, l

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Lumped-distributed branch-line coupler CC CC Input Direct CoupledIsolated

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 The lumped element equivalent of a quarter-wave transmission line L  Z o  CC  Z o  1

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Lumped-element Wilkinson power divider C C 2C L L 2Z o IN OUT

Radio Frequency Engineering Lecture #1 Passives - Extra Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Lumped-element branch-line coupler L  C C L  L  C C L  Input Direct CoupledIsolated