Faraday’s law of induction

Slides:



Advertisements
Similar presentations
Electromagnetic Induction
Advertisements

ElectroMagnetic Induction
Chapter 30. Induction and Inductance
Electromotive Force (EMF) Faraday’s Law Suppose we have some source of force on charges that transport them Suppose it is capable of doing work W on each.
Faraday’s law of induction
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Physics 1304: Lecture 13, Pg 1 Faraday’s Law and Lenz’s Law ~ B(t) i.
Electromotive Force Revisited When we say something has energy, it can do work Electric potential is the potential energy per unit charge: the amount of.
Lenz’s Law AP Physics C Montwood High School R. Casao.
C H A P T E R   22 Electromagnetic Induction.
Magnetic Domains – Randomly Oriented ~ atoms in each domain.
Chapter 22 Electromagnetic Induction Induced Emf and Induced Current There are a number of ways a magnetic field can be used to generate an electric.
Walker, Chapter 23 Magnetic Flux and Faraday’s Law of Induction
Copyright © 2009 Pearson Education, Inc. Lecture 9 – Electromagnetic Induction.
Magnetism July 2, Magnets and Magnetic Fields  Magnets cause space to be modified in their vicinity, forming a “ magnetic field ”.  The magnetic.
Lecture 32: WED 01 APR Ch30.1–4 Induction and Inductance I Induction and Inductance I Physics 2113 Jonathan Dowling Fender Stratocaster Solenoid Pickup.
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created? Gauss’s.
Physics 121: Electricity & Magnetism – Lecture 11 Induction I Dale E. Gary Wenda Cao NJIT Physics Department.
Chapter 29:Electromagnetic Induction and Faraday’s Law
Electromotive Force Revisited When we say something has energy, it can do work Electric potential is the potential energy per unit charge: the amount of.
Electromagnetic Induction Objective: TSW understand and apply the concept of magnetic flux in order to explain how induced emfs are created and calculate.
Remember?  An electron is moving downward with a velocity, v, in a magnetic field directed within the page, determine direction of force.
Induction and Inductance Chapter 30 Magnetic Flux.
Monday, Apr. 9, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #18 Monday, April 9, 2012 Dr. Jaehoon Yu Induction of EMF.
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment A primary coil is connected to a battery and a secondary coil is connected to an ammeter.
Chapter 21 Electromagnetic Induction and Faraday’s Law.
General electric flux definition
Electromagnetic Induction
Chapter 31 Faraday’s Law.
3/5/2014 PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #14 Wednesday March 5, 2014 Dr. Andrew Brandt Chapter 21 Induced emf Faraday’s.
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment – Set Up A current can be produced by a changing magnetic field First shown in an experiment.
Induced Voltages and Inductance
Electromagnetic Induction and Electromagnetic Waves!
MAGNETIC INDUCTION MAGNETUIC FLUX: FARADAY’S LAW, INDUCED EMF:
Copyright © 2009 Pearson Education, Inc. Chapter 31: Faraday’s Law.
Announcements Clicker quizzes NO LONGER GRADED!
Electromagnetic Induction AP Physics Chapter 21. Electromagnetic Induction 21.1 Induced EMF.
Electromagnetic Induction. Faraday Discovered basic principle of electromagnetic induction Whenever the magnetic field around a conductor is moving or.
Induced Voltages and Inductance
Copyright © 2009 Pearson Education, Inc. Chapter 28 Sources of Magnetic Field.
Chapter 20 Electromagnetic Induction. Electricity and magnetism Generators, motors, and transformers.
Unit 5 Day 2: Induced EMF in a Moving Conductor Induced EMF in a Moving Conductor in a Magnetic Field Force Required to Move a Moving Conductor in a Uniform.
What is the direction of the induced current?
29. Electromagnetic Induction
Chapter 31 Faraday’s Law. Faraday’s Law of Induction – Statements The emf induced in a circuit is directly proportional to the time rate of change of.
Monday, Apr. 10, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #18 Monday, Apr. 10, 2006 Dr. Jaehoon Yu Induced EMF and.
112/7/2015 Applied Physics Lecture 15  Electricity and Magnetism Induced voltages and induction Magnetic flux and induced emf Faraday’s law Chapter
Generators & Motors Textbook Sections 23-6 – Physics.
Copyright © 2009 Pearson Education, Inc. Chapter 28 Sources of Magnetic Field.
Tuesday April 19, PHYS , Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #18 Tuesday April 19, 2011 Dr. Andrew Brandt Chapter 29 Lenz Law.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
1 Magnetic flux [weber Wb], defines the amount of magnetic field (B [Tesla]) which travels perpendicular to an area A [m 2 ] Symbol: Ф Unit: Weber Wb A.
Chapter 22 Electromagnetic Induction Induced Emf and Induced Current There are a number of ways a magnetic field can be used to generate an electric.
BASIC ELECTRICAL TECHNOLOGY DET 211/3 Chapter 5: Introduction to Machinery Principles.
Right-hand Rule 2 gives direction of Force on a moving positive charge Right-Hand Rule Right-hand Rule 1 gives direction of Magnetic Field due to current.
PHY 102: Lecture Induced EMF, Induced Current 7.2 Motional EMF
Magnetic Induction 1Physics is Life. Objectives To learn how magnetic fields can produce currents in conductors To understand how this effect is applied.
Chapter 29:Electromagnetic Induction and Faraday’s Law
Finally! Flux! Electromagnetic Induction. Objectives.
Electromotive Force Revisited
EMF Induced in a Moving Conductor (“Motional EMF”)
Lecture 3-5 Faraday’ s Law (pg. 24 – 35)
Warm-up Why do loops of wire in a motor rotate?
I2 is decreasing in magnitude I2 is constant
Phys102 Lecture 18/19 Electromagnetic Induction and Faraday’s Law
Magnetic Sources The Biot-Savart Law
Electromotive Force Revisited
Electromotive Force Revisited
Presentation transcript:

Faraday’s law of induction Chapter 31: Faraday’s law of induction Reading assignment: Chapter 31 Homework 31 (Apirl 30): HW 31: CQ10, QQ1, QQ2, QQ3, QQ4, OQ1, OQ2, OQ3, OQ4, OQ5, OQ6, OQ7, OQ10, AE1, AE8, 3, 4, 31, 20, 23, 36, 37 Previous chapter: A current produces a magnetic field Now: Can a magnetic field produce an electric current? Yes – Faraday’s law of induction: ‘A changing magnetic field (in time) induces an emf (and, thus, also a current) This is the underlying physical law for generators and electric power generation  extremely powerful applications.

Faraday’s law of induction: Can a magnetic field produce an electric current? Faraday: A steady magnetic field produces no current Faraday: A changing magnetic field does produce a current. This current is called induced current. Induced emf is produced by a changing magnetic field Negative current No current Positive current

Remember Magnetic flux Product of the normal component of the magnetic field passing through a loop of area A. Unit of flux FB is Weber (1W) = Tesla·meter2 The strength of the B field is proportional to the number of lines per unit area. Thus the flux FB is proportional to the total number of normal lines passing through the coil.

Faraday’s law of Induction If the flux through N loops of wire changes by an amount DFB during a time Dt, the induced emf during this time is: An emf can be induced in three ways (and any combination of those): By changing the magnitude of the magnetic field. By changing the area of the loop. By changing the loops orientation with respect to the field.

White board examples A coil consists of 200 turns of wire. Each turn is a square of side d = 18 cm, and a uniform magnetic field directed perpendicularly to the plane of the coil is turned on. If the field changes from 0 to 50 T in 0.8 s, what is the magnitude of the induced emf in the coil, while the field is changing? The flexible loop in the figure below has a radius of 12.0 cm and is in a magnetic field of magnitude 0.150 T. The loop is grasped at points A and B and stretched until its area is nearly zero. If it takes 0.200 s to close the loop, what is the magnitude of the average induced emf in it during this time interval?

Lenz’s law – what is the direction of the current? An induced emf always gives rise to a current whose magnetic field opposes the original change in flux Example:

Application – induction stove Some modern stove burners a based on induction. An ac current passes around a coil that is the “burner” (that never gets hot). Why will it heat a metal pan, but not a glass pan? The AC current sets up a changing magnetic field that passes through the bottom of the pan. This changing magnetic field induces a current through the pan bottom, and since the pan offers resistance, electric energy is transformed into heat, heating the pot and its contents. Works very well with steel pots. Does not work well with aluminum pots (magnetic field does not penetrate far enough  no good induction current). Does also not work on non-conducting pots. Resistance in glass container is too high, very little current is induced.

Application - Ground Fault Circuit Interrupters Fuses/circuit breakers don’t keep you from getting electrocuted But GFI’s (or GFCI’s) do GFCI Under normal use, the current on the live wire matches the current on the neutral wire. Magnetic fields cancel inside orange donut. Now, imagine you touch the live wire – current path changes (no current goes back to ground wire). There is magnetic field around the donut Changing magnetic field means EMF in blue wire Current flows in blue wire Magnetic field produced by solenoid Switch is magnetically turned off

Examples Practice with Lenz’s law. In which direction is the current induced in the coil for each situation in the Figure? Counterclockwise current Clockwise current No current Can’t be determined

Examples Practice with Lenz’s law. Counterclockwise current In which direction is the current induced in the coil for each situation in the Figure? Counterclockwise current Clockwise current No current Can’t be determined

Black board example Pulling a coil from a magnetic field. A square coil of 5.0 cm contains 100 loops and is positioned perpendicular to a uniform 0.60 T magnetic field. It is quickly and uniformly pulled from the field (perpendicular to B) to a region where B drops abruptly to zero. It takes 0.1 seconds for the coil to reach the field-free region. (a) Find the change in flux through the coil. (b) Find the emf and current induced if the resistance of the coil is 100 W. How much energy is dissipated in the coil if its resistance is 100 W?

Motional emf - emf induced in a moving conductor Look at the Figure: Uniform magnetic field is perpendicular to the area bounded by the U-shaped conductor. Movable rod resting on it. Rod is moving at speed v; travels a distance Dx = v·Dt Area of the loop increases DA = l·Dx = l·v·Dt By Faraday’s law there is an induced emf: Direction of current can be obtained by right hand rule (remember F = qvB) or Lenz’s law.

White board example Pulling a coil through a magnetic field. A rectangular metallic loop of dimensions l and w and resistance R moves with constant speed v to the right as shown in the figure. The loop passes through a uniform magnetic field directed into the page and extending 3w along the x-axis. Plot the magnetic flux, the emf and the applied force.

Faraday’s law in general form: A changing magnetic flux produces an electric field We just saw that a changing magnetic flux induces an emf, and a current in a conducting loop. A current implies there is an electric field in the conductor. Thus, a changing magnetic field (changing magnetic flux) induces an electric field! The E-field is perpendicular to the B-field

Electric Generators (Dynamo) Or: How to convert mechanical into electrical energy? Many coils of wire (only one is shown) rotate in a magnetic field. The axle is turned by some mechanical means. An emf is induced in the rotating wire and electric current is generated. The generated current is alternating current. Right hand rule for induction: thumb – Induced current (Force on charge) index finger – velocity of wire; middle finger – B-field v v

Electric power generation: emf (voltage) produced by a generator Magnetic flux: The coil is rotating with angular velocity w. Then q = wt For N loops, we get an emf of: v

White board problem  loop of wire A rectangular loop of wire 20 cm by 20 cm with 50 turns is rotated rapidly in a magnetic field B, so that the loop makes 60 full rotations a second. At t = 0 the loop is perpendicular to B. What is the EMF generated by the loop, in terms of B at time t? What B-field do we need to get a maximum voltage of 170 V?  loop of wire

Comments on Generators The EMF generated is sinusoidal in nature (with simple designs) This is called alternating current - it is simple to produce This is actually how power is generated Generators extremely similar to motors – often you can use a single one for both Turn the axle – power is generated Feed power in – the axle turns Regenerative braking for electric or hybrid cars