Photonic Quantum Ring Laser & Mega-Pixel Laser Chip for Display

Slides:



Advertisements
Similar presentations
ENTANGLEMENT AND QUANTUM CONTROL OF COLD ATOMS CONFINED IN AN OPTICAL LATTICE CARLO SIAS Università di Pisa Quantum Computers, algorithms and chaos – Varenna.
Advertisements

Michael Lebby4th IEEE Workshop on AST 1 Tutorial 1998 Optoelectronic Devices and Packaging: VCSEL Technology Tutorial Leader: Michael Lebby Phoenix Applied.
6.772/SMA Compound Semiconductors Lecture 23 - Detectors -2 - Outline Photodiodes p-n photodiodes: review of physics; photovoltaic mode; TIA's p-i-n.
Small signal modulatioin
High power (130 mW) 40 GHz 1.55 μm mode-locked DBR lasers with integrated optical amplifiers J. Akbar, L. Hou, M. Haji,, M. J. Strain, P. Stolarz, J. H.
Sub-Picosecond Pulse Generation using Fast Saturable Absorption in AlGaInAs/InP Quantum Wells M. Haji, L. Hou, A. E. Kelly, R. G. Green, G. Mezosi, J.
Slow light and resonance phenomena in photonic crystals
Optical near-field control of nanoresonators Near Field Optics Group OMR ICB - Université de Bourgogne Benoit Cluzel, Loïc.
Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider
BENNY SHEINMAN, DAN RITTER MICROELECTRONIC RESEARCH CENTER
Scintillator Tile Hadronic Calorimeter Prototype (analog or semidigital) M.Danilov ITEP(Moscow) CALICE Collaboration LCWS04, Paris.
1 Display Power Characteristics Lin Zhong ELEC518, Spring 2011.
1 Tunable Lasers in Optical Communications By James Harper Instructor: P. Lui Department of Electrical Engineering University at Buffalo State University.
Digital Imaging with Charge- coupled devices (CCDs)
1 M. Casalino [1][2], L. Sirleto [1], L. Moretti [2], I. Rendina [1] [1] Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle.
Status and Future of BESSY RF BESSY II operating since 1999 Willy Wien Laboratory groundbreaking 9/2004 HoBiCaT Testfacility for sc cavities Commissioning.
Nanophotonics Class 3 Photonic Crystals. Definition: A photonic crystal is a periodic arrangement of a dielectric material that exhibits strong interaction.
Nanophotonics Class 5 Rare earth and quantum dot emitters.
Single Electron Devices Vishwanath Joshi Advanced Semiconductor Devices EE 698 A.
Nanophotonics Class 2 Surface plasmon polaritons.
Chapter 9. PN-junction diodes: Applications
Lorenzo O. Mereni Valeria Dimastrodonato Gediminas Juska Robert J. Young Emanuele Pelucchi Physical properties of highly uniform InGaAs.
Current POLARITON LIGHT EMITTING DEVICES: RELAXATION DYNAMICS Simos Tsintzos Dept of Materials Sci. & Tech Microelectronics Group University of Crete /
Strong coupling between Tamm Plasmon and QW exciton
Before Between After.
Carrier and Phonon Dynamics in InN and its Nanostructures
2003/04/071 Characteristic of 850-nm InGaAs/AlGaAs Vertical-Cavity Surface-Emitting Lasers Master’s thesis of Yuni Chang Speaker:Han-Yi Chu National Changhua.
Engineering the light matter interaction with ultra-small open access microcavities Jason M. Smith Department of Materials, University of Oxford, Parks.
Limits and Interfaces in Sciences / Kumboldt-Kolleg São Paulo-SP,
Boris N. Chichkov Leibniz University Hannover
Magnificent Optical Properties of Noble Metal Spheres, Rods and Holes Peter Andersen and Kathy Rowlen Department of Chemistry and Biochemistry University.
Agilent Technologies Optical Interconnects & Networks Department Photonic Crystals in Optical Communications Mihail M. Sigalas Agilent Laboratories, Palo.
Guillaume TAREL, PhC Course, QD EMISSION 1 Control of spontaneous emission of QD using photonic crystals.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
High-Q small-V Photonic-Crystal Microcavities
EE235 Class Presentation on Nanoimprint Lithography (Spring 2007) Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography.
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Theory of Intersubband Antipolaritons Mauro F
Laser Diode Efficiencies
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
Temperature behaviour of threshold on broad area Quantum Dot-in-a-Well laser diodes By: Bhavin Bijlani.
Ultra-small mode volume, high quality factor photonic crystal microcavities in InP-based lasers and Si membranes Kartik Srinivasan, Paul E. Barclay, Matthew.
Uni S T.E.Sale et al., HPSP 9, Sapporo 2000, paper 27P15. Gain-Cavity Alignment in Efficient Visible (660nm) VCSELs Studied Using High Pressure Techniques.
Min Hyeong KIM High-Speed Circuits and Systems Laboratory E.E. Engineering at YONSEI UNIVERITY
Advisor: Prof. Yen-Kuang Kuo
報告人 : 洪國慶. Outline INTRODUCTION EXPERIMENTAL DETAILS RESULTS AND DISCUSSION CONCLUSION REFERENCES 2.
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 11: Thermal Property Measurement Techniques For Thin Films and Nanostructures.
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
2. Design Determine grating coupler period from theory: Determine grating coupler period from theory: Determine photonic crystal lattice type and dimensions.
Growth and optical properties of II-VI self-assembled quantum dots
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
Picking the laser ion and matrix for lasing
Advanced laser and led structures, applications
Optical coupling of SC nanosensors for THz frequencies
J.Kalkman, A.Tchebotareva, A.Polman, T.J.Kippenberg,
Y.Y CHEN.
L7 Lasers UConn ECE /27/2017 F. Jain
Integrated Semiconductor Modelocked Lasers
IV. Laser Diode (LD) or Semiconductor Laser
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
A. Bramati M. Romanelli E. Giacobino
The Blue Laser Diode (chapter 11~15) Speaker:Meng-Lun Tsai
by Shuji Nakamura Science Volume 281(5379): August 14, 1998
High Power, Uncooled InGaAs Photodiodes with High Quantum Efficiency for 1.2 to 2.2 Micron Wavelength Coherent Lidars Shubhashish Datta and Abhay Joshi.
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
Project 1.4: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals Saeed Younis.
My years in the Coldren VCSEL group
Presentation transcript:

Photonic Quantum Ring Laser & Mega-Pixel Laser Chip for Display IEEE-LEOS 2008 Nov. 11, 2008 (GaN) Photonic Quantum Ring Laser & Mega-Pixel Laser Chip for Display [Whispering Cave Mode] O’Dae Kwon Department of Electrical Engineering Pohang University of Science and Technology Pohang 790-784, Korea odkwon@postech.ac.kr http://www.postech.ac.kr/ee/light

2-D Whispering Gallery vs. 3-D Whispering Cave toroidal cavity 3D TIR  3D WCM prop. of PQR PQR from carrier-photon couple Single Mode Red PQR Laser Blue PQR Laser Laser TV [model]

St. Paul cathedral : Lord Rayleigh concave Whispering Gallery – Bessel function 2D TIR (Total Intn’l. Reflec’n) - 2D symmetry

Micro Whispering Gallery Mode(WGM) 1910 Lord Rayleigh. WGM from concave surface Philosophical magazine, xx. 1001 (1910). 2D TIR 1992 A.F.J. Levi, R.E. Slusher et al. 2D WGM microdisk lasers (thumb-tack), Appl. Phys. Lett. 60, 289 (1992). 2D TIR 1998 J.C. Ahn, et al., O’Dae Kwon. 3D WGM lasers by using naturally produced toroidal cavity in cylinders 3D TIR (whispering cave mode:WCM) Phys. Rev. Lett. 82, 536 (1999); SPIE (1998) 2003 D.K. Armani et al & K.J. Vahala. WGM by using laser-baked toroid-shaped cavity Nature. 421, 926 (2003). 3D TIR possible WCM SiO2 WGM Bessel (Jm) field profile Helical wave

(3D WCM) PQR fabrication & structure Vertical mesa using CAIBE Ar: Cl2: BCl3 Silicon nitride coating SiNx P-DBR Active layer N-DBR substrate Epi structure Planarization using polyimide Polymide CF4 SiNx etching by RIE for metal contact

PQR hole (3D WCM) PQR (concave) & PQR hole (convex) CMP-Metal-WireBond-Packaging P-metal N-metal PQR hole OPTO Paper # 6897-29 :Mega-pixel PQR hole chip : PC eff. isolations Ion implantation for hole isolation H+-Ion Implantation Hole etching, passivation Metal contact

Photonic Quantum Ring Low threshold current (ϕ=15 μm) Ahn et al., PRL, 82, 536 (1999). 12㎂, near the PQR threshold 11.5㎃, below VCSEL threshold 12.2 ㎃, above Low threshold current (ϕ=15 μm) z P-DBRs N-DBRs ρ P-metal MQW Bessel (Jm) field profile Helical wave Temperature stability (T1/2 dependent) A. Yariv. APL, 53, 12 (1988).

PQR Threshold Ith ( ) # of wires I. QW assumption II. QWR assumption Ahn et al., PRL, 82, 536 (1999). Kwon et al., APL, 89, 11108 (2006). PQR Threshold Ith A. Yariv. APL, 53, 12 (1988). I. QW assumption ( ) Chin-Chu-Ho, JAP 75,3302(1994) PQR mesa: ● (threshold) ○ (transparency) PQR hole: ▪ (threshold) ▫(transparency) II. QWR assumption WRayleigh 10 0.314 3 (2.4) 20 0.629 5 (4.85) 30 0.943 7.2 # of wires λ/2 Park et al., APL, 79, 1593 (2001).

Spectral PQR Analy. of 3D WCM theoy Opt. Lett. Vol. 28, 1861 (2003)

PQR: carrier-photon dynamic model Dynamic filamentation and beam quality of quantum-dot lasers E. Gehrig and O. Hess, APL, 84, 1650 (2004). Park et al., APL, 79, 1593 (2001). Bessel (Jm) field profile Helical wave evanescent region Toroidal cavity z x z=L x=W Stripe of WRayleigh E. Gehrig et al., APL, 84, 1650 (2004).

WRayleigh~1 µm, ϕ = 30 µm [MEJ,2008] Field intensity 10 0.314 2.4 20 0.629 4.8 30 0.943 7.2 Stripe of WRayleigh x Field intensity @5psec Carrier distribution@5psec Stripe of WRayleigh ~ 5 [#] 10psec time Carrier distribution

Local density of states in 2DEG Electron standing waves in a 2DEGs Coherent branched electron flow in a 2DEGs Room temp 1.7K Au(111) surface Period:15Å P. Avouris, Physics Today, 11, 17 (1993). M. F. Crommie, et al. Nature, 363, 524 (1993). Quantum corral of electrons M.A. Topinka, R.M. Westervelt, E.J. Heller, “Imaging Electron Flow", Physics Today 56, 12 (2003).

Polarization Vectors // PQR Kim et al., JAP, 102(5), xx (2007). Strong Carrier-Photon Coupling fiber ② ③ ① ① : linear polarizer ② : linear polarizer ③ : +135o (a): without polarizer (b): polarizer (c): polarizer (d): +45o polarizer (e): +135o polarizer =15 μm, I=150 A (10kHz)

Single mode PQR Laser JAP (2008) to appear 500 nA 1 uA 3 uA 5 uA

Red PQR Laser Array PQR emission LED emission 256 array ( = 7 m) Spacing = 68 m 256 array ( = 10 m) I = 2 mA (7.8 A/cell ) Emission image of the 16x16 mesa type red PQR laser array; reveals two different regions at an injection current of 24uA. The PQR lasing occurs in the periphery of the active disk called the Rayleigh band and the LED emission occurs in the middle part of the disk. It shows that the PQR region is emitting first and much brighter than the LED emission region, which means very high emission efficiency of the PQR laser. - The PQR lasing region is brighter than the LED emission region, which means very high emission efficiency of the PQR laser.

Blue PQR laser at 480nm

PQR array ( , spacing) CW/ room temp /at 60mA : without & with an attenuation filter

Blue PQR Laser LLO & dielDBR Structure 20um Ti/Al SiNx

Multimode PQR Lasing PQR LED

GaN Surface-Emitting Laser at Blue Wavelengths H. M. , S GaN Surface-Emitting Laser at Blue Wavelengths H. M., S. Yoshimoto, et al., & S. Noda Science 25 Jan. 2008: Vol. 319. pp. 445 Ith=6.9 A (67 kA/cm2)pulse (GaN)–PhC-SEL ; latt. cn. 100 - 200 nm GaN-hybrid VCSEL InGaN/GaN 10QW @77K APL Lu et al, 92, 141102 (4/2008) AlN/GaN DBR –Cracks/Leaks /p-doping & Ta2O5/SiO2 dielectric DBR

Structure of PQR Laser image chip TV Color recombination system Projection system 이 그림은 PQR laser image chip TV의 구조도입니다. Image chip은 R,G,B PQR array 및 FPGA controller로 구성됩니다. 각 RGB 영상을 합성하기 위해 다이크로익 프리즘을 통과 시킨 후, 프로젝션 시스템에 의해 확대 투사하게 됩니다. 이 사진은 글자 ‘ST’-RED PQR array를 140배 확대한 image입니다. (메사 수 870) 장차 구현하게 될 Image chip TV에서는 이 mesa하나가 one 픽셀이 될 것입니다. 이제 PQR image chip TV 구현을 위한 기초적인 실험 결과에 대해 말씀 드리겠습니다. 실험은 크게 두 부분으로 나뉘어져 있습니다. Image chip의 메사 수 및 size등을 얻기 위한 기초적인 최적화 과정과, Projection system의 설계를 위한 기초적인 Lens 실험입니다. Color recombination system

Matrix addressable scheme 1. First etching Matrix addressable PQR array Matrix addressable scheme 1. First etching 2. N-metal evaporation 3. Second etching ( Perfect isolation ) 4. PI planarization & P-metal evaporation 5. Fully addressable PQR array

[Matrix addressable] PQR laser chip TV PQR (Photonic Quantum Ring) laser Ultra-low threshold current ( ) dependent temperature stability High speed modulation : ~100MHz to GHz Speckle Free : 3-dim WCM (Whispering Cave Mode) Low power consumption PQR array Matrix addressable scheme Addressed through a row and column connection Minimizing the chip size Lowering the number of connections for the array : High count arrays [Matrix addressable] PQR laser chip TV