7-2 PYTHAGOREAN THEOREM AND ITS CONVERSE

Slides:



Advertisements
Similar presentations
The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum.
Advertisements

EQ: How can we use the Pythagoren Theorem and Triangle Inequalities to identify a triangle?
The Pythagorean Theorem. The Right Triangle A right triangle is a triangle that contains one right angle. A right angle is 90 o Right Angle.
8-1 The Pythagorean Theorem and Its Converse. Parts of a Right Triangle In a right triangle, the side opposite the right angle is called the hypotenuse.
CHAPTER 8 RIGHT TRIANGLES
8.1 Pythagorean Theorem and Its Converse
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
Benchmark 40 I can find the missing side of a right triangle using the Pythagorean Theorem.
Pythagorean Theorem 5.4. Learn the Pythagorean Theorem. Define Pythagorean triple. Learn the Pythagorean Inequality. Solve problems with the Pythagorean.
8.1 The Pythagorean Theorem and Its Converse. Pythagorean Theorem In a right triangle, the sum of the squares of the lengths of the legs is equal to the.
Objective: To use the Pythagorean Theorem and its converse.
Pythagorean Theorem And Its Converse
Section 11.6 Pythagorean Theorem. Pythagorean Theorem: In any right triangle, the square of the length of the hypotenuse equals the sum of the squares.
+ Warm Up B. + Homework page 4 in packet + #10 1. Given 2. Theorem Given 4. Corresponding angles are congruent 5. Reflexive 6. AA Similarity 7.
3.6 Pythagorean Theorem Warm-up (IN) 1.Find the area of a square whose sides are 10 units long. 2. The square of what number is 2704? 3. Evaluate each.
Section 8-1: The Pythagorean Theorem and its Converse.
Goal 1: To use the Pythagorean Theorem Goal 2: To use the Converse of the Pythagorean Theorem.
Pythagorean Theorem Unit 7 Part 1. The Pythagorean Theorem The sum of the squares of the legs of a right triangle is equal to the square of the hypotenuse.
Geometry Section 9.3 Pythagorean Theorem Converse.
The Pythagorean Theorem
Geometry Section 7.2 Use the Converse of the Pythagorean Theorem.
Objectives: 1) To use the Pythagorean Theorem. 2) To use the converse of the Pythagorean Theorem.
Pythagorean Theorem and Its Converse Chapter 8 Section 1.
Converse of Pythagorean Theorem
Pythagorean Theorem Theorem 8-1: Pythagorean Theorem – In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of.
3/11-3/ The Pythagorean Theorem. Learning Target I can use the Pythagorean Theorem to find missing sides of right triangles.
Section 8-3 The Converse of the Pythagorean Theorem.
Exploring. Pythagorean Theorem For any right triangle, the area of the square on the hypotenuse is equal to the sum of the areas of the squares on the.
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
Converse to the Pythagorean Theorem
Sec. 8-1 The Pythagorean Theorem and its Converse.
Lesson 5-7 Use the Pythagorean Thm 1 Identify the Pythagorean triples 2 Use the Pythagorean inequalities to classify ∆s 3.
Before you start, go to “Slide Show” and click “Play from start”. Hit enter to go to the next slide. Thank you.
Warm-Up If a triangle has two side lengths of 12 and 5, what is the range of possible values for the third side? 2.
Converse of the Pythagorean Theorem
Introduction to Chapter 4: Pythagorean Theorem and Its Converse
8.1 Pythagorean Theorem and Its Converse
The Pythagorean Theorem
8-1: The Pythagorean Theorem and its Converse
Pythagorean Theorem and it’s Converse
7-2 The Pythagorean Theorem
7.2 Use the Converse of the Pythagorean Theorem
The Converse of the Pythagorean Theorem
LT 5.7: Apply Pythagorean Theorem and its Converse
4.5 The Converse of the Pythagorean Theorem
Geometric Mean Pythagorean Theorem Special Right Triangles
Section 7.2 Pythagorean Theorem and its Converse Objective: Students will be able to use the Pythagorean Theorem and its Converse. Warm up Theorem 7-4.
Bellringer Simplify each expression 5 ∙ ∙ 8.
7.2 The Pythagorean Theorem and its Converse
Pythagorean Theorem and Its Converse
Welcome back from spring break! The rest of the year will FLY by!
WARM UP Decide whether the set of numbers can represent the side lengths of a triangle. 2, 10, 12 6, 8, 10 5, 6, 11.
[non right-angled triangles]
Math 3-4: The Pythagorean Theorem
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum.
The Pythagorean Theorem
8-2 The Pythagorean Theorem and Its Converse
8.1 Pythagorean Theorem and Its Converse
Theorems Relating to the Pythagorean Theorem
5.7: THE PYTHAGOREAN THEOREM (REVIEW) AND DISTANCE FORMULA
The Pythagorean Theorem
7-1 and 7-2: Apply the Pythagorean Theorem
8.1 Pythagorean Theorem and Its Converse
Objective: To use the Pythagorean Theorem and its converse.
Geometric Mean Pythagorean Theorem Special Right Triangles
WARM UP Decide whether the set of numbers can represent the side lengths of a triangle. 2, 10, 12 6, 8, 10 5, 6, 11.
The Pythagorean Theorem
Converse to the Pythagorean Theorem
Pythagorean Theorem & Its Converse
Presentation transcript:

7-2 PYTHAGOREAN THEOREM AND ITS CONVERSE GEOMETRY

Pythagorean Theorem (Thm Pythagorean Theorem (Thm. 7-4): In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse. 𝑎 2 + 𝑏 2 = 𝑐 2

Pythagorean Triple: set of nonzero whole numbers, a, b, and c that satisfy the Pythagorean Theorem Common Triples: 3, 4, 5 5, 12, 13 7, 24, 25 8, 15, 17 12, 25, 37 20, 21, 29

Ex. 1) Are 6, 8, and 15 a Pythagorean Triple?

Ex. 2) Find the variable.

Ex. 3) Find the variable.

Ex. 4) Find the variable.

Ex. 5) Finding the Area using the Pythagorean Thm.

𝑎 2 + 𝑏 2 = 𝑐 2 𝑎 2 + 𝑏 2 > 𝑐 2 𝑎 2 + 𝑏 2 < 𝑐 2 Converse of the Pythagorean Theorem (Thm. 7-5): If the square of the length of one side of a triangle is equal to the sum of the squares of the lengths of the other two sides, then the triangle is a right triangle. 𝑎 2 + 𝑏 2 = 𝑐 2 𝑎 2 + 𝑏 2 > 𝑐 2 𝑎 2 + 𝑏 2 < 𝑐 2 Right Triangle Acute Triangle Obtuse Triangle

Ex. 6) Classify the triangle.

Ex. 7)