ILC Project Hitoshi Yamamoto Tohoku University Rencontre de Vietnam August 13, 2013, Qui Nhon.

Slides:



Advertisements
Similar presentations
05/11/2006Prof. dr hab. Elżbieta Richter-Wąs Physics Program of the experiments at L arge H adron C ollider Lecture 4.
Advertisements

Bruce Kennedy, RAL PPD Particle Physics 2 Bruce Kennedy RAL PPD.
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
5th May 2011Fergus Wilson, RAL1 Experimental Particle Physics PHYS6011 Looking for Higgs and SUSY at the LHC or...what can you get for $10,000,000,000.
TIME 2005: TPC for the ILC 6 th Oct 2005 Matthias Enno Janssen, DESY 1 A Time Projection Chamber for the International Linear Collider R&D Studies Matthias.
First results from the ATLAS experiment at the LHC
European Strategy for Particle Physics 2013 Preparatory group->Strategy group Individual town meetings Town meeting in Krakow: september 2012 Drafting.
Industry and the ILC B Barish 16-Aug May-05ILC Consultations - Washington DC2 Why e + e - Collisions? elementary particles well-defined –energy,
Dean Karlen University of Victoria & TRIUMF APS NW Section Meeting 2005 Victoria, Canada.
LHC’s Second Run Hyunseok Lee 1. 2 ■ Discovery of the Higgs particle.
International collaboration in high energy physics experiments  All large high energy physics experiments today are strongly international.  A necessary.
Hitoshi Yamamoto, 20-Dec-12, Annual Meeting JSPS specially-promoted research A Global R&D Program of a State-of-the-art Detector System for ILC 1 Detector.
Status of ILC Barry Barish Caltech / GDE 17-Aug-07.
 k0k0 ++ -- -- p ILC Technical Design Report Physics and Detectors – Detailed Baseline Design Juan A. Fuster Verdú, IFIC-Valencia PAC Meeting, KEK.
HEPAP and P5 Report DIET Federation Roundtable JSPS, Washington, DC; April 29, 2015 Andrew J. Lankford HEPAP Chair University of California, Irvine.
Atsuto Suzuki. 2 Japan Policy Council Second Recommendations: Regional Development through Creation of Global Country inside Japan Realizing a global.
Round-table: Discussion on Future Machines. With the discovery of the Higgs Boson Self-consistent model (SM) accounting for all Particle Physics phenomena.
ILC Project status Philip Burrows John Adams Institute Oxford University 1.
Hitoshi Yamamoto, 15-Mar-2013, ILC detector monthly meeting, KEK 1 Detector Introduction.
FZÚ, J. Cvach, LCWS051 LCWS 05 1.LHC a ILC 2.Top 3.Higgs 4.Polarizace.
Precise Measurements of SM Higgs at the ILC Simulation and Analysis V.Saveliev, Obninsk State University, Russia /DESY, Hamburg ECFA Study Workshop, Valencia.
Search for Invisible Higgs Decays at the ILC Akimasa Ishikawa (Tohoku University)
Higgs Properties Measurement based on HZZ*4l with ATLAS
1 1 LCC Physics and Detector Hitoshi Yamamoto LCWS2013, Tokyo November 11, 2013.
JSPS specially-promoted research A Global R&D Program of a State-of-the-art Detector System for ILC Annual Meeting Hitoshi Yamamoto Tohoku University December.
The time line Autumn 2011CERN Council initiated an update exercise to the European Strategy for Particle Physics which was approved by a special Council.
ILC in Japan A 10 minute introduction H.Weerts Argonne National Lab March 24, 2014 University of Chicago.
C. K. MackayEPS 2003 Electroweak Physics and the Top Quark Mass at the LHC Kate Mackay University of Bristol On behalf of the Atlas & CMS Collaborations.
Detecting & observing particles
Measurement of the branching ratios for Standard Model Higgs decays into muon pairs and into Z boson pairs at 1.4 TeV CLIC Gordana Milutinovic-Dumbelovic,
1 SPAFOA Capitol Hill Briefing December 2013 Harry Weerts International Linear Collider - progress & status SPAFOA meeting, Dec 11, 2013, H.Weerts.
Status Report on ILC Project in Japan Seiichi SHIMASAKI Director, Office for Particle and Nuclear Research Promotion June 19, 2015.
Contents 1. Introduction 2. Analysis 3. Results 4. Conclusion Presice measurement of the Higgs-boson electroweak couplings at Linear Collider and its physics.
Taikan Suehara, 16 th general meeting of ILC physics (Asia) wg., 2010/07/17 page 1 Model 500 GeV Taikan Suehara ICEPP, The Univ. of Tokyo.
1 Physics Input for the CLIC Re-baselining D. Schulte for the CLIC collaboration.
Hitoshi Yamamoto, Tohoku University KIAS-CFHEP Workshop November 13,
Higgs Reach Through VBF with ATLAS Bruce Mellado University of Wisconsin-Madison Recontres de Moriond 2004 QCD and High Energy Hadronic Interactions.
Status and plans for role of Japan in HL-LHC Katsuo Tokushuku Institute of Particle Nuclear Studies (IPNS) High Energy Accelerator Research Organization.
2° ILD Workshop Cambridge 11-14/09/08 The sensitivity of the International Linear Collider to the     in the di-muon final state Nicola D’Ascenzo University.
Gordana Milutinovic-Dumbelovic Vinca Institute of Nuclear Sciences, Belgrade Ivanka Bozovic-Jelisavcic, Strahinja Lukic, Mila Pandurovic Branching ratio.
Search for Higgs portal Dark matter Tohoku Ayumi Yamamoto 11/5 2011/11/51.
Questions from the CLIC accelerator team (D. Schulte, LCD “monthly” 25 Feb. 2013) -> a first attempt to answers 1 25 March 2013.
Hitoshi Yamamoto, 17-Jan-2013, SiD Workshop 1 Detector Japanese Plan for ILC.
From the Standard Model to Discoveries - Physics with the CMS Experiment at the Dawn of the LHC Era Dimitri Bourilkov University of Florida CMS Collaboration.
1 Overview of physics RDR and the next step Yasuhiro Okada (KEK/Sokendai) March 3, 2008 TILC08, Sendai, Japan.
Hitoshi Yamamoto, 2-Oct Detector Tohoku Forum for Creativity - a Pilot Program - ‘Particle Physics and Cosmology after the Discovery of the Higgs.
12 March 2006, LCWS06, BangaloreS. Bhattacharya 1 Satyaki Bhattacharya The Standard Model Higgs Search at the LHC University of Delhi.
1 Diboson production with CMS Vuko Brigljevic Rudjer Boskovic Institute, Zagreb on behalf of the CMS Collaboration Physics at LHC Cracow, July
Top Higgs Yukawa Coupling Analysis – Status Report Hajrah Tabassam Quai-i-Azam University, Islamabad ON BEHALF OF: R. Yonamine, T. Tanabe, K. Fujii, KEK.
Feasibility study of Higgs pair creation in gamma-gamma collider Hiroshima University Nozomi Maeda 19.April 2009.
Search for a Standard Model Higgs Boson in the Diphoton Final State at the CDF Detector Karen Bland [ ] Department of Physics,
Steering Group Meeting 10:30 – 12:30 am CDT Monday, July 23, 2007 Y2K.
Backup slides Z 0 Z 0 production Once  s > 2M Z ~ GeV ÞPair production of Z 0 Z 0 via t-channel electron exchange. e+e+ e-e- e Z0Z0 Z0Z0 Other.
ILC Project Hitoshi Yamamoto Tohoku University INSTR2014 Novosibirsk, February23, 2014.
1 Comments concerning DESY and TESLA Albrecht Wagner Comments for the 5th meeting of the ITRP at Caltech 28 June 2004 DESY and the LC What could DESY contribute.
Please check out: K. Ohmi et al., IPAC2014, THPRI003 & THPRI004 A. Bogomyagkov, E. Levichev, P. Piminov, IPAC2014, THPRI008 Work in progress FCC-ee accelerator.
The ILC Project Hitoshi Yamamoto Tohoku University ILC and more - INFN Mini Workshop May 16, 2013, Como.
CPM 2012, Fermilab D. MacFarlane & N. Holtkamp The Snowmass process and SLAC plans for HEP.
Hitoshi Yamamoto, Tohoku University CEPC Physics Workshop August 10, 2015 Overview of the ILC Project Kitakami ILC Site 1.
Electroweak Physics Towards the CDR
Electroweak physics at CEPC
ATLAS Upgrade Program Sarah Demers, US ATLAS Fellow with BNL
Electroweak Physics Towards the CDR
Electroweak Physics Towards the CDR
Detectors for Linear Colliders - ILC and CLIC -
Snowmass on the Mississippi
BSM search using Higgs to invisible decay at the ILC
Yasuhiro Okada, Executive Director, KEK
Yasuhiro Okada (KEK) April 17, 2003, CAT, Indore, India
SuperKEKB Proto-collaboration
Presentation transcript:

ILC Project Hitoshi Yamamoto Tohoku University Rencontre de Vietnam August 13, 2013, Qui Nhon

ILC Physics

Discovery of Higgs-like particle The fine-tuning problem of the SM became real. (unless multiverse) The problem of missing dark matter in the SM became accute and more … : Compelling reasons for the next step. A new era of particle physics has begun! The ILC is designed to lead the new era.

ILC (International Linear Collider) 31 km Damping ring Main linac electron Positron beam 500 GeV CM with 31 km upgrade later to ~ 1TeV CM with 50 km IP beam size : 6nm high, 500 nm wide 300 m long GeV CM) Luminosity 1.8 x /cm 2 s GeV CM)

ILC features : cleanliness Collision of two elementary particles proton + proton at LHC Proton = 3 quarks + gluons electron + positron at ILC Signal is clearly seen without much noises LHC ILC All from Higgs Theoretically clean (less theoretical uncertainties) Trigger-less data taking proton quark gluon proton electron positron LHC ILC

ILC features : control Initial state of electron-positron interaction : Energy-momentum 4-vector is specified Electron polarization (80%~90%) is specified Positron polarization (60%) is optional (30% comes for free) LHC ILC Energy-momentum 4-vector e.g. recoil mass analysis: tagged Higgs Higgs to ALL (including invisible final state) H H

Electron polarization e e,Z (B,A 0 ) Specify the intermediate state Right-handed e- turns off A 0 Information on the gauge structure of the final state Increase rates e.g. P - /P + = 0.8/0.3 : Increases the H production mode ( H) by X 2.34 (=1.8 x1.3 ) Background rejection Right-handed e- turns off W e e W+W+ W e.g. acoplanar muon pair produciton such as smuon pair production

Higgs – Generate ~30K Higgs every year (w/ pol) 5 Higgs discovery sensitivity in ~ 1 day – Higgs Brs (table later) H cc, invisible; & model independent – tot to 5% Br(H WW) & g(HWW) by e+e- H Br(H ZZ) & g(HZZ) by e+e- – CP to 3~4% (on mixing coeff) top – m t (msbar) to 100 MeV – Anomalous ttZ, tbW, ttg coupl New physics through SM – Composite Higgs scale to 45 TeV – Anomalous WWV coupl New unexpected particles! ILC 250~500 GeV

TeV At higher Ecm – W fusion dominant – More Higgs – New particles ! W fusion Higgsstrahlung Luminosity each energy for ~3 years Good for Higgs self coupling e+e- HH – Effect of irreducible diagrams less 1 TeV GeV) ab 1 TeV

ILC Upgrade Options 250 GeV CM (Higgs factory) – X4 3E34/cm 2 s – x2 Nbunch, x2 rep rate; MW wall plug 500 GeV CM – x2 2 s – x2 Nbunch; MW wall plug 1 TeV CM – x1.4 2 s – Aggressive beam params; Same wall plug power Recall the additional ~x2 luminosity by polarizations for Ecm > ~1 TeV (W-fusion)

Measurement errors of Higgs Couplings (Snowmass study – Higgs WG preliminary) Fit assumes generation universality, no BSM. Apart from ILC is 1/3 ~ 1/10 of LHC With luminosity upgrade, additional ~1/2 ILC can measure model-independently w/o assumptions above.

ILC Accelerator

13 Low emittance : KEK ATF (Accelerator Test Facility) – Achieved the ILC goal. Small vertical beam size : KEK ATF2 – Goal = 37 nm, 65 nm achieved Limit is in measurement. No basic problem seen. Stabilize the beam at nm scale: KEK ATF2 – Feedback system successful (FONT) 1. Ultra-Small Beam

ILC Accelerator 14 Accelerating cavity – Spec: 31.5 MV/m ±(<20%) – >80% yield achieved (RDR goal achieved) Cryomodule assembly – Combine cavities from all over the world KEK S1-global successful 2. Main Acceleration TDR completed: ILC technology is now ready

ILC Detectors

ILC Detector Performances Vertexing ~1/5 r beampipe,1/50~1/1000 pixel size, ~1/10 resolution (wrt LHC) Tracking ~1/6 material, ~1/10 resolution (wrt LHC) Jet energy (quark reconstruction by PFA) 1000x granularity, ~1/2 resolution (wrt LHC) Above performances achieved in realistic simulations based on actual detector R&Ds.

Charged particles –Use trackers Neutral particles –Use calorimeters Remove double-counting of charged showers –Requires high granularity PFA (particle flow algorithm) PFA (particle flow algorithm) #chECALHCAL ILC (ILD)100M10M LHC76K(CMS)10K(ATLAS) X10 3 for ILC Need new technologies ! ILD

Impact parameter resolution ILC Belle ATLAS LHCb Alice

ECAL/HCAL within SC coil SiD – High B field (5 Tesla) – Small ECAL ID – Small calorimeter volume Finer ECAL granularity – Silicon main tracker ILD – Medium B field (3.5 Tesla) – Large ECAL ID Particle separation for PFA – Redundancy in tracking – TPC for main tracker Design Strategies

Situation in Japan

KEK roadmaps 2007 – ILC at the top of the pyramid 2013 – KEK will play a central role in creating an international preparatory group and will lead the effort on advanced R&D, the engineering design of the apparatus and facility, and the organizational design toward groundbreaking for the linear collider project to be hosted in Japan, within the framework of a global collaboration. 21

JAHEP (Japan Association of High Energy Physicists) A report on large projects (March 2012) –On ILC: Should a new particle such as a Higgs boson with a mass below approximately 1~TeV be confirmed at LHC, Japan should take the leadership role in an early realization of an e+e- linear collider. In particular, if the particle is light, experiments at low collision energy should be started at the earliest possible time. (Now, Higgs particle has been found and it is light) A proposal for staging of ILC (October 2012) –Staging A Higgs factory with a CM energy of ~250 GeV to start Upgraded in stages to ~500 GeV (TDR baseline) Technical expandability to ~1 TeV to be secured –Guideline for cost sharing The host country to cover 50% of the expenses (construction) of the overall project of the 500 GeV machine. The actual contributions left to negotiations among the governments. 22

International Supports Europe : European Strategy (March 22, 2013) – There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded … The initiative from the Japanese particle physics community to host the ILC in Japan is most welcome, and European groups are eager to participate. Europe looks forward to a proposal from Japan to discuss a possible participation. US : HEPAP facilities subpanel report (March 22, 2013) – The initiative from the Japanese particle physics community to host the ILC in Japan is very welcome, and the U.S. particle physics community looks forward to a proposal from Japan to discuss possible participation. – For the final US strategy, wait for the Snowmass process and the P5 subpanel report. 23

32 Rebuilding true command tower functions that strongly advance science and technology policies –…We will actively promote the critical fields of energy creation, energy conservation, energy storage, etc. as knowledge-concentrated national strategies - for example, our country should be able to play a leading role in creation of international centers for scientific innovations such as the ILC (the international linear collider) project which is a grand project in the field of particle physics. 92 Creation of globally top-class centers for research and development –…We will significantly strengthen supports for universities and public research facilities that perform studies at levels above the intentional standards, such as significant expansion of WPIs and playing a leading role in creation of international centers for scientific innovations such as the ILC (the international linear collider construction) project which is a grand project in the field of particle physics. 24 Political support : LDP (Liberal Democratic Party : New Ruling Party) election platform ILC appears twice explicitly

25 Press conference by the MEXT minister Shimomura Jan 18, 2013 (On ILC) We would like to consider the plan for the near future, while as the government actively negotiating with relevant countries in the first half of this year … we are now studying the legal framework.

Support by Industries: A report by the Association of Corporate Executives ( : one of the two such groups in Japan 26 … On down-selecting the Japanese candidate sites to one, it is important to proceed with a fair selection process in order to build an All-Japan framework. The selection process should be based on the results of the geological and technical studies being conducted by experts, and should be decided fairly. … The Japanese government should announce the intention to site the ILC in Japan, and propose to related countries to begin discussions toward its realization.

Two Candidate Sites Kyushu –Sefuri mountains Tohoku –Kitakami mountains Strong and stable granite bedrocks One of them will be chosen based on: –Geology and technical aspects –Infrastructure and economic ripple effects Planning to announce this month (Aug) Sefuri Kitakami 27

Times line (The possible best, but realistic, scenario) End 2013 – Japanese government officially announces international negotiation with relevant countries toward siting the ILC in Japan – Negotiations among governments – Finish R&Ds. Prepare for the international lab – Bidding for construction, start construction – Start operation

Summary With the discovery of Higgs, the physics case for the ILC is now stronger than ever ILC accelerator design is ready with the completion of TDR The ILC detectors are pushing the state of the art of particle detection technologies Japanese government is now willing to negotiate with other governments toward siting the ILC in Japan (when will be the official announcement?) There are strong supports from the international scientific community. (will they translate to real commitments?) 29

Backups

Measurement errors of Higgs couplings LHC 14 TeV 3000 fb-1 and ILC 500 GeV 500 fb-1 Apart from ILC errors are 1/3~1/10 of LHC (statistical equivalent: 1~2 orders of magnitude more- at about the same cost ) LHC may improve systematics (both theoretical and experimental) ILC by full simulation with bkgs. May improve analysis methods Great prospect for HEP : ILC and LHC running in parallel! Klute et al arXiv:1301/1322v2 500 fb -1 of GeV 1.8 E34/cm 2 s : ~3 years (1 yr = 1E7 s)