Semiconductor Device Modeling & Characterization Lecture 20

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Lecture 1b - Review Kishore C Acharya. 2 Building Semiconductor Devices To build semiconductor devices # of carriers present in the semiconductor must.
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
EMT362: Microelectronic Fabrication CMOS ISOLATION TECHNOLOGY Part 1
ECE574 – Lecture 3 Page 1 MA/JT 1/14/03 MOS structure MOS: Metal-oxide-semiconductor –Gate: metal (or polysilicon) –Oxide: silicon dioxide, grown on substrate.
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture #30 OUTLINE The MOS Capacitor Electrostatics
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE130/230A Discussion 8 Peng Zheng.
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Sung June Kim Chapter 18. NONIDEAL MOS Sung June Kim
Semiconductor Device Modeling & Characterization Lecture 19
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Semiconductor Device Modeling & Characterization Lecture 23
Professor Ronald L. Carter
Presentation transcript:

Semiconductor Device Modeling & Characterization Lecture 20 Professor Ronald L. Carter ronc@uta.edu Spring 2001 L20March 29

Equivalent circuit above OSI Depl depth given by the maximum depl = xd,max = [2eSi|2fp|/(qNa)]1/2 Depl cap, C’d,min = eSi/xd,max Oxide cap, C’Ox = eOx/xOx Net C is the series comb C’Ox C’d,min L20March 29

MOS surface states** p- substr = n-channel L20March 29

n-substr accumulation (p-channel) Fig 10.7a* L20March 29

n-substrate depletion (p-channel) Fig 10.7b* L20March 29

n-substrate inversion (p-channel) Fig 10.7* L20March 29

Ideal 2-terminal MOS capacitor/diode conducting gate, area = LW Vgate=VG -xox SiO2 y L silicon substrate tsub Vsub=VB x L20March 29

Band models (approx. scale) metal silicon dioxide p-type s/c Eo Eo Eo qcox ~ 0.95 eV qcSi= 4.0eV qfm= 4.28 eV for Al Ec qfs,p Eg,ox ~ 8 eV EFm Ec EFp EFi Ev Ev L20March 29

Flat band with oxide charge (approx. scale) SiO2 p-Si +<--Vox-->- q(Vox) Ec,Ox q(ffp-cox) q(fm-cox) Ex Eg,ox~8eV EFm Ec EFi EFp q(VFB) Ev VFB= VG-VB, when Si bands are flat Ev L20March 29

Values for gate work function, fm L20March 29

Values for fms with metal gate L20March 29

Values for fms with silicon gate L20March 29

Experimental values for fms Fig 10.15* L20March 29

Calculation of the threshold cond, VT L20March 29

Equations for VT calculation L20March 29

Fully biased n-MOS capacitor VG Channel if VG > VT VS VD EOx,x> 0 n+ e- e- e- e- e- e- n+ p-substrate Vsub=VB Depl Reg Acceptors y L20March 29 L

Effect of contacts, VS and VD L20March 29

Computing the D.R. width at O.S.I. Ex Emax x L20March 29

Computing the threshold voltage L20March 29

L20March 29

L20March 29

L20March 29

Fully biased MOS capacitor in inversion VG>VT Channel VS=VC VD=VC EOx,x> 0 n+ e- e- e- e- e- e- n+ p-substrate Vsub=VB Depl Reg Acceptors y L20March 29 L

Flat band with oxide charge (approx. scale) SiO2 p-Si +<--Vox-->- q(Vox) Ec,Ox q(ffp-cox) q(fm-cox) Ex Eg,ox~8eV EFm Ec EFi EFp q(VFB) Ev VFB= VG-VB, when Si bands are flat Ev L20March 29

Flat-band parameters for n-channel (p-subst) L20March 29

MOS energy bands at Si surface for n-channel Fig 8.10** L20March 29

Fully biased n- channel VT calc L20March 29

References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986 L20March 29