Importance of Interface on device characterization/operation Quantitative Discussion on Gate Current H. Watanabe, ECE, NCTU, Taiwan June 26/2013H. Watanabe,

Slides:



Advertisements
Similar presentations
Chemical Quantities or
Advertisements

Agenda Semiconductor materials and their properties PN-junction diodes
Chapter 2-3. States and carrier distributions
Chapter 7 Chemical Quantities
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
PIDS: Poster Session 2002 ITRS Changes and 2003 ITRS Key Issues ITRS Open Meeting Dec. 5, 2002 Tokyo.
Performance estimates for the various types of emerging memory devices Victor Zhirnov (SRC) and Ramachandran Muralidhar (Freescale)
1 Material Dependence of NBTI Stress & Recovery in SiON p-MOSFETs S. Mahapatra, V. D. Maheta, S. Deora, E. N. Kumar, S. Purawat, C. Olsen 1, K. Ahmed 1,
Chemical Quantities or
Radiation damage in silicon sensors
LaB6 Scanning Electron Source
Break Time Remaining 10:00.
The basics for simulations
Accumulation Gate Capacitance of MOS Devices with Ultra-thin High-K Gate Dielectrics: Modeling and Characterization Ahmad Ehteshamul Islam and Anisul Haque.
Advance Nano Device Lab. Fundamentals of Modern VLSI Devices 2 nd Edition Yuan Taur and Tak H.Ning 0 Ch9. Memory Devices.
Design and Use of Memory-Specific Test Structures to Ensure SRAM Yield and Manufacturability F. Duan, R. Castagnetti, R. Venkatraman, O. Kobozeva and S.
MOS – AK Montreux 18/09/06 Institut dÉlectronique du Sud Advances in 1/f noise modeling: 1/f gate tunneling current noise model of ultrathin Oxide MOSFETs.
Circuit Modeling of Non-volatile Memory Devices
6.1 Transistor Operation 6.2 The Junction FET
OXIDE AND INTERFACE TRAPPED CHARGES, OXIDE THICKNESS
Contact Modeling and Analysis of InAs HEMT Seung Hyun Park, Mehdi Salmani-Jelodar, Hong-Hyun Park, Sebastian Steiger, Michael Povoltsky, Tillmann Kubis,
15. Oktober Oktober Oktober 2012.
Single Electron Devices Vishwanath Joshi Advanced Semiconductor Devices EE 698 A.
1..
Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill.
Green Transistor for 10X Lower IC Power ?
: 3 00.
5 minutes.
Essential Cell Biology
Carrier and Phonon Dynamics in InN and its Nanostructures
Clock will move after 1 minute
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
How Scientists Determine Formulas
Comparison among modeling approaches for gate current computation in advanced gate stacks ARCES: N.Barin, C.Fiegna, E.Sangiorgi BU: P.A.Childs FMNT-CNRS:
Spectroscopy of Hybrid Inorganic/Organic Interfaces Electron Spectroscopy Dietrich RT Zahn.
Metal Oxide Semiconductor Field Effect Transistors
Nanostructures Research Group Center for Solid State Electronics Research Quantum corrected full-band Cellular Monte Carlo simulation of AlGaN/GaN HEMTs.
Techniques for determination of deep level trap parameters in irradiated silicon detectors AUTHOR: Irena Dolenc ADVISOR: prof. dr. Vladimir Cindro.
Novel high-k materials Can we nominate candidates for the 22 and the 16 nm nodes? Olof Engstrom Chalmers University of Technology Paul Hurley Tyndall National.
Reliability of ZrO 2 films grown by atomic layer deposition D. Caputo, F. Irrera, S. Salerno Rome Univ. “La Sapienza”, Dept. Electronic Eng. via Eudossiana.
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
Norhayati Soin 06 KEEE 4426 WEEK 3/2 13/01/2006 KEEE 4426 VLSI WEEK 3 CHAPTER 1 MOS Capacitors (PART 2) CHAPTER 1.
Investigation of Performance Limits of Germanium DG-MOSFET Tony Low 1, Y. T. Hou 1, M. F. Li 1,2, Chunxiang Zhu 1, Albert Chin 3, G. Samudra 1, L. Chan.
ULIS 2003-Udine Italy Evolution of Si-SiO 2 interface trap density under electrical stress in MOSFETs with ultrathin oxides F. Rahmoune and D. Bauza Institut.
Advanced Materials Research Center, AMRC, International SEMATECH Manufacturing Initiative, and ISMI are servicemarks of SEMATECH, Inc. SEMATECH, the SEMATECH.
1 S.K. Dixit 1, 2, X.J. Zhou 3, R.D. Schrimpf 3, D.M. Fleetwood 3,4, S.T. Pantelides 4, G. Bersuker 5, R. Choi 5, and L.C. Feldman 1, 2, 4 1 Interdisciplinary.
Introduction Amorphous arrangement of atoms means that there is a possibility that multiple Si atoms will be connected Amorphous arrangement of atoms means.
Vanderbilt MURI meeting, June 14 th &15 th 2007 Band-To-Band Tunneling (BBT) Induced Leakage Current Enhancement in Irradiated Fully Depleted SOI Devices.
IEE5328 Nanodevice Transport Theory
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
Scattering Rates for Confined Carriers Dragica Vasileska Professor Arizona State University.
F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band.
Chunxiang Zhu 1, Hang Hu 1, Xiongfei Yu 1, SJ Kim 1, Albert Chin 2, M. F. Li 1,4, Byung Jin Cho 1, and D. L. Kwong 3 1 SNDL, Dept. of ECE, National Univ.
Ion Beam Analysis of the Composition and Structure of Thin Films
Effect of Oxygen Vacancies and Interfacial Oxygen Concentration on Local Structure and Band Offsets in a Model Metal-HfO 2 - SiO 2 -Si Gate Stack Eric.
Fowler-Nordheim Tunneling in TiO2 for room temperature operation of the Vertical Metal Insulator Semiconductor Tunneling Transistor (VMISTT) Lit Ho Chong,Kanad.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 38 MOS capacitor Threshold Voltage Inversion: at V > V T (for NMOS), many electrons.
June 13, MURI Annual Review X. J. Zhou, et al 1 Effects of Switched-Bias Annealing on Charge Trapping in HfO 2 high-  Gate Dielectrics X. J.
June MURI Review1 Total Dose Response of HfO 2 /Dy 2 O 3 on Ge and Hf 0.6 Si 0.2 ON 0.2 on Si MOS Capacitors D. K. Chen, R. D. Schrimpf, D. M.
Trap Engineering for device design and reliability modeling in memory/logic application 1/ 년 02 월 xx 일 School of EE, Seoul National University 대표.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 1.
AFOSR/AFRL Center of Excellence: The Science of Electronics in Extreme Electromagnetic Environments MOSFET Defect Enhanced Vulnerability to Terminal Voltage.
Revision CHAPTER 6.
Integration of DFT, Process and Device Modeling: The Virtual Fab
Total Dose Response of HfSiON MOS Capacitors
MOS Capacitor Basics Metal SiO2
Mechanical Stress Effect on Gate Tunneling Leakage of Ge MOS Capacitor
Multiscale Modeling and Simulation of Nanoengineering:
Presentation transcript:

Importance of Interface on device characterization/operation Quantitative Discussion on Gate Current H. Watanabe, ECE, NCTU, Taiwan June 26/2013H. Watanabe, ECE, NCTU1 [1] H. Watanabe, et.al, IEEE TED 53, , [2] H. Watanabe, et.al, IEEE TED 57, , [3] H. Watanabe, IEEE TED 57, , Source of this talk:

Studied Dielectrics (tunnel oxide, IPD and so on) What is Current? Material for CG (Poly, Silicide, Metal?) Electrode for TEST SUB, or Poly SUB Electrode Wide enough to measure the current June 26/20132H. Watanabe, ECE, NCTU Tunneling is integrated in space to become a tunnel current. In actual devices, the spatial integration is invalid.

What is Current? June 26/20133H. Watanabe, ECE, NCTU Even though area is large, trap-assisted leakage is a local issue.

D Gate In Labo S June 26/2013H. Watanabe, ECE, NCTU4 S D G Gate current itself is an issue, but too small to be usually measurable. G 20 nm On Chip Greater Gate Current to be measurable. 100 um x 100um 100nm x 100nm Limit of equipment Too small…

D Gate In Labo S June 26/2013H. Watanabe, ECE, NCTU5 Greater Gate Current to be measurable. 100 um x 100um 100nm x 100nm Stress-Induced Leakage Current (SILC) 10nm Limit of equipment Too small…

D Gate In Labo S June 26/2013H. Watanabe, ECE, NCTU6 Greater Gate Current to be measurable. Local Trap Stress-Induced Leakage Current (SILC) 100 um x 100um 100nm x 100nm 1-order 10nm Limit of equipment Too small…

D Gate In Labo S June 26/2013H. Watanabe, ECE, NCTU7 Greater Gate Current to be measurable. S D G G >10 nm On Chip Trap-enhanced Tunneling: measurable 100 um x 100um 100nm x 100nm 10nm Limit of equipment Too small…

June 26/2013H. Watanabe, ECE, NCTU8 S D G G >10 nm On Chip S D G Local Trap

Motivation of this talk June 26/2013H. Watanabe, ECE, NCTU9 Trap-related Gate Leak should be focused for this aim. Overview of analytical method for this aim.

Dielectric Scaling in Electron Devices June 26/2013H. Watanabe, ECE, NCTU10 Is 0.5nm a limit?

Dielectric Scaling in Electron Devices June 26/2013H. Watanabe, ECE, NCTU11 Interface is becoming dominate dielectric. InterFace Transition Layer

June 26/2013H. Watanabe, ECE, NCTU12 Si O O O O O O O O O Neaton, PRL 00 IFT layer = atomistic interface Muller, Nature 99 EELS Electron-energy loss spectroscopy ~4Å + penetration

Literature of IFT layers June 26/2013H. Watanabe, ECE, NCTU13 IFT widthApproachNOTE Muller et.al. Nature 99 4 Å EELS: O K edge count Regarding evanescent wave as origin of interfacial states Demkov et. al. PRL 99 4Å4Å Quantum Molecular Dynamics Valence band offset near interface is smaller than in bulk. Kaneta et. al. Micro. Eng Å First Principle Molecular Dynamics Moderate change within 1 Å Pantelides et. al. T. Nuc. Sci Å First Principles IFT width from E C offset and E V offset are 5 Å and 2 Å, respectively. Neaton et. al. PRL 00 5Å First Principles E G The number of second neighbor O atoms Yamazaki et. al. PRB Å First Principle Molecular Dynamics Estimating of EG from local DOS Takahashi et. al. JJAP Å XPSSiO 2 /Si(111) Hattori et. al. Appl. Surf. Sci Å XPSSiO 2 /Si(001) Giustino, et. al. PRL Å Density Functional Approach Dielectrics inside IFT layers is governed by chemical grading but not evanescent wave. Watari et. al. PRB 04 4Å4Å Density Functional First Principles Using superlattice Present 4Å4Å CV-JV Fitting Significance of poly-Si side IFT layer Limit(?) of EOT is 0.5nm. H. Watanabe, et.al, IEEE TED 53, , 2006.

June 26/2013H. Watanabe, ECE, NCTU14 Tunnel mass vs IFT Layer Neglecting IFTIFT T ox Tunnel Current T ox = T pure Under-estimated T pure

June 26/2013H. Watanabe, ECE, NCTU15 Tunnel mass vs IFT Layer Neglecting IFT H. Watanabe, IEEE TED53, 1323, 2006M. Stadele, J. Appl. Phys. 93, 2681, 2003 Over-estimated T pure IFT

Literature of Tunnel Mass June 26/2013H. Watanabe, ECE, NCTU16 IFT width Tunnel Mass (m 0 ) T OX - dependence Polarity of V G in fitting ApproachNOTE CVJV Brar et. al. JAP96 0Å (Para) (NP) No ++ EXP &WKB T OX – T ellipso =3 5 Å Khairurrijal et. al. APL 00 0Å Yes Maybe, EXP & WKBNo IFT Demkov et.al. PRB, 01 4Å4Å Yes NothingEither Ballistic Transport Metal/SiO 2 /M etal Stadele et. al. JAP 03 4Å4Å 0.39 ( + T OX ) Yes Nothing + Comparing WKB with TB Neglecting IFT in WKB Sacconi et. al. TED04 4Å4Å 0.39 [1 (ΔE C E)/E G ] Yes Nothing Comparing WKB with TB Neglecting IFT in WKB Watanabe TED06 4Å4Å No Both CV-JV Fitting Including IFT

Model of IFT layer June 26/2013H. Watanabe, ECE, NCTU T pure T all 17 Gradual Energy Gap (EG) Change Gradual Dielectric Const. (K) Change H. Watanabe, IEEE TED (2006)

Impact of IFT Layers June 26/2013H. Watanabe, ECE, NCTU18 Positive V G case Negative V G case

June 26/2013H. Watanabe, ECE, NCTU19 T OX 1.All IFT related models are considered in calculation. Thickness 2.Entire CV & JV are fitted at the same moment. Tunnel Mass Comparison with exp. CV-fitting JV-fitting

Expansion to Alloy model June 26/2013H. Watanabe, ECE, NCTU20 Gradual Energy Gap (EG) Change Gradual Dielectric Const. (K) Change A B C α β γ δ A = Si B = O C = N Ex) A = HrO 2 B = Al 2 O 3 C = Si 3 N 4 A = ZrO 2 B = Al 2 O 3 C = Si 3 N 4

Expansion to Alloy model June 26/2013H. Watanabe, ECE, NCTU21 Gradual Energy Gap (EG) Change Gradual Dielectric Const. (K) Change A B C α β γ δ A simplest case Si O N SiO Si 3 N 4 x 1-x A = Si B = O C = N Ex) (SiO 2 ) 1-X (Si 3 N 4 ) X

Stoichiometric Alloy Model 22 A B C α β γ δ A simplest case Si O N SiO Si 3 N 4 x 1-x A = Si B = O C = N Ex) (SiO 2 ) 1-X (Si 3 N 4 ) X Check by Exp. June 26/2013H. Watanabe, ECE, NCTU (Exp. Sample) AR-XPS

Stoichiometric Alloy Model June 26/2013H. Watanabe, ECE, NCTU23 (SiO 2 ) 1-X (Si 3 N 4 ) X Check by Exp. From [O] at and From [N] at are equivalent. AR-XPS

Stoichiometric Alloy Model June 26/2013H. Watanabe, ECE, NCTU24 (SiO 2 ) 1-X (Si 3 N 4 ) X Bonding-Rate: Change the view point: From Atoms to Bonding. Lucovsky, SSDM96 Yasuda, SSDM01

Stoichiometric Alloy Model June 26/2013H. Watanabe, ECE, NCTU25 Bonding-Rate: K=K OX (1-R)+K SiN R EG=EG OX (1-R)+EG SiN R Lucovsky, SSDM96 Yasuda, SSDM01

Further Expansion June 26/2013H. Watanabe, ECE, NCTU26

Expansion to Off-Stoichiometry June 26/2013 H. Watanabe, ECE, NCTU 27 Stoichiometric SiSi ON Off-stoichiometric

June 26/2013 H. Watanabe, ECE, NCTU 28 SiSi ON Suppose:

DB Yield June 26/2013 H. Watanabe, ECE, NCTU 29

June 26/2013H. Watanabe, ECE, NCTU30 DB from Si-N Si-DB is generated where N is removed from Si-N bond. N-DB is in lower level. Si-DB N-DB Kato, ICPS-28, 2006 Si with N incorporated

Band Structure June 26/2013H. Watanabe, ECE, NCTU31 Si (SiO 2 ) 1-X (Si 3 N 4 ) X Si 3 N 4 (x=1) SiO 2 (x=0) More N Oxide Incorporate Trap Levels (DB) More Ox EG=EG OX (1-R)+EG SiN R VBA=VBA OX (1-R)+VBA SiN R

June 26/2013H. Watanabe, ECE, NCTU32 Barrier Modulation by trapped charge Electron tunneling Hole tunneling p-Si n + poly Barrier V G BarrierIncreasing IFT Suppose: trap (DB) level above Fermi level is charged positive.

Extraction of Y DB June 26/2013H. Watanabe, ECE, NCTU33 CV-fitting with Y DB Smaple-1 Smaple-2 Smaple-3 Smaple-4 Only Y DB modulates CV-curve, since T phys, [N]- and [O]-profiles are obtained by AR-XPS.

June 26/2013H. Watanabe, ECE, NCTU34 Hole Tunnel Mass Tunnel masses for electrons & holes are the same, 0.85m 0. Electron 23% 31% 40% EXP.: Muraoka, JAP94 31%

June 26/2013H. Watanabe, ECE, NCTU35 Trap-assisted tunneling (TAT) Trap TAT DT D1D1 D2D2 Tunneling Prob.: TATDT D DT

Trap-assisted tunneling (TAT) June 26/2013H. Watanabe, ECE, NCTU36 TAT vanishes while is less than 1E-15cm 2.

June 26/2013H. Watanabe, ECE, NCTU37 CV-JV Fitting Result Y DB (%)T Phys (nm)N poly (cm -3 )N sub (cm -3 ) × × × × × × × ×10 19 Enhanced Direct Tunneling

June 26/2013H. Watanabe, ECE, NCTU38 Single Electron Sensitive 3D device simulator Put trap in 3D device structure. H. Watanabe, Transient Device Simulation of Floating Gate Nonvolatile Memory Cell With a Local Trap, IEEE TED., vol. 57, pp , Trap Positive charge Gate Area: 30nm x 30nm

June 26/2013H. Watanabe, ECE, NCTU39 Gate Area: 30nm x 30nm Vd 0V Trap (Positive Charge) Positive Charge

Conclusions Trap-related gate leak is smallest measurable current. To make sure tunnel mass, IFT layers is carefully considered. Dangling Bond Yield is introduced. Enhanced Direct Tunneling is discovered, which is a candidate for the smallest trap-related current. Todays device engineering already detected the foot-print. – Data retention degradation from 10-years to ½ year. June 26/2013H. Watanabe, ECE, NCTU40

Thanks for your attention. 1.H. Watanabe, D. Matsushita, K. Muraoka, Determination of tunnel mass and physical thickness of gate oxide including poly-Si/SiO2 and Si/SiO2 interfacial transition layers, IEEE Trans. Elec. Dev. Vol. 53, no. 6, pp , H. Watanabe, D. Matsushita, K. Muraoka, and K. Kato, Universal tunnel mass and charge trapping in [(SiO2)1-x(Si3N4)x]1-ySiy film, IEEE Trans. Elec. Dev., vol. 57, no. 5, pp , H. Watanabe, Transient Device Simulation of Floating Gate Nonvolatile Memory Cell With a Local Trap, IEEE TED., vol. 57, pp , June 26/2013H. Watanabe, ECE, NCTU41 Co-authors of related papers: D. Matsushita, K. Muraoka, K. Kato Author is supported as Phison Electronics Chair Professor.