Evolution and Biodiversity

Slides:



Advertisements
Similar presentations
MORGAN MARTIN & ABI FUNK 4 TH HOUR APRIL 14, 2011 Chapter 4 Evolution and Biodiversity.
Advertisements

“Each species here today represents a long chain of evolution and plays a unique ecological role (niche) in the earth’s communities and ecosystems.”
Evolution and Biodiversity Chapter 3 Pages
How do geological processes and climate change affect evolution?
Evolution and Biodiversity: Origins, Niches, and Adaptations
Warm-Up Questions How old is the Earth?
Evolution and Biodiversity: Origins, Niches, and Adaptation G. Tyler Miller, Jr.’s Environmental Science 10 th Edition Chapter 5 G. Tyler Miller, Jr.’s.
Evolution and Biodiversity
Chapter 4 Evolution and Biodiversity. Chapter Overview Questions  How do scientists account for the development of life on earth?  What is biological.
Evolution & Biodiversity
Evolution and Biodiversity
Biodiversity and Evolution Chapter What Is Biodiversity and Why Is It Important?  Concept 4-1 The biodiversity found in genes, species, ecosystems,
Biodiversity and Evolution
Biodiversity and Evolution
Generalist and Specialist Species: Broad and Narrow Niches
Evolution and Biodiversity
Pop Quiz 1)A Change in a sequence of DNA is called what? 2) Darwin called the ability of an organism to survive and reproduce in its environment what?
Chapter 4 Evolution and Biodiversity. Chapter Overview Questions  How do scientists account for the development of life on earth?  What is biological.
Evolution and Biodiversity
Chapter 4 Evolution and Biodiversity. ORIGINS OF LIFE  1 billion years of chemical change to form the first cells, followed by about 3.7 billion years.
G. Tyler Miller’s Living in the Environment 13 th Edition Evolution and Biodiversity: Origins, Niches, and Adaptations Chapter 5 Evolution and Biodiversity:
Chapter 5 Evolution and Biodiversity. Chapter Overview Questions  How do scientists account for the development of life on earth?  What is biological.
Sections 5-2 & 5-4 Evolution and Biodiversity What is Evolution?
Biodiversity Chapter 4 Part I.
Chapter 4 Evolution and Biodiversity:. Origins of Life Early Earths information comes from chemical & radioactivity analysis of rocks and fossils Earth.
Evolution Primers Isn't Evolution Just a Theory??? How Does Evolution Really Work? How Do We Know Evolution Happens?
Ch 04 Origins of Life/ Natural Selection Ch 04 Section 1 Section 2.
Chapter 4 Evolution and Biodiversity. Core Case Study Earth: The Just-Right, Adaptable Planet ● During the 3.7 billion years since life arose, the average.
Biodiversity and Evolution Chapter What Is Biodiversity and Why Is It Important?  Concept 4-1 The biodiversity found in genes, species, ecosystems,
Copyright © 2008 Pearson Education, Inc., publishing as Benjamin Cummings Evolution, Biodiversity and Extinctions.
Chapter origins of life.. Key Concepts Origins of life- Life started about 3.7 billion years ago. Origins of life- Life started about 3.7 billion.
Chapter 4. Biodiversity: the variety of earth’s species, the genes they contain, the ecosystems in which they live and the ecosystem processes and energy.
Chapter 4 Evolution and Biodiversity. Chapter Overview Questions  How do scientists account for the development of life on earth?  What is biological.
Biodiversity: Genetic Variation & Habitat Loss Tuesday, January 26 th, 2016.
 Lecture: Macroevolution and Mass Extinction. Macroevolution  Macroevolution- large-scale evolutionary changes that take place over long periods of.
V. Evolution by Natural Selection ▪ Biological Evolution: the process whereby earth’s life changes over time through changes in genetic characteristics.
Unit 4: Biodiversity and Endangered Species Section 1: Evolution and Biodiversity.
Chapter 4 Evolution and Biodiversity. Core Case Study Earth: The Just-Right, Adaptable Planet  3.7 billion years since life arose  average surface temperature.
1 Evolution Chapter 5. 2 Darwin Darwin’s observations included diversity of living things, remains of ancient organisms, and characteristics of organism.
Chapter 3 Evolution, Species, Interactions, and Biological Communities.
Evolution and Biodiversity G. Tyler Miller’s Living in the Environment 14 th Edition Chapter 5 Part 1 G. Tyler Miller’s Living in the Environment 14 th.
Evolution and Biodiversity Chapter 4. Core Case Study: Life on Earth Uniquely suited for life –Temperature range –Liquid water –Gravitational mass –Oxygen.
Evolution and Biodiversity
Natural Selection and Evolution
Biodiversity and Evolution
Evolution and Biodiversity
UNIT 3 Chapter 4 Evolution and Biodiversity
Evolution, Biodiversity and Extinctions
Evolution.
Evolution and Biodiversity
Evolution and Biodiversity: Origins, Niches, and Adaptations
Biodiversity Variety of the earth’s species, the genes they contain, the ecosystems in which they live, and the ecosystem processes such as energy flow.
How have you, AND will, you EVOLVE???
Biodiversity and Evolution
Evolution and Biodiversity
Biodiversity and Evolution
Evolution and Biodiversity
Evolution and Biodiversity
Isolation Leading to Speciation…
Evolution and Biodiversity
Evolution of Biodiversity
Chapter 4 Evolution & Biodiversity
What is Mass Extinction?
Ch.5 - Evolution and Biodiversity
Geologic Time Ch. 30.
Evolution and Biodiversity
Evolution and Biodiversity
Core Case Study Earth: The Just-Right, Adaptable Planet
Evolution of Biodiversity
The Geological Time Scale
Presentation transcript:

Evolution and Biodiversity Chapter 4a Evolution and Biodiversity

Core Case Study Earth: The Just-Right, Adaptable Planet During the 3.7 billion years since life arose, the average surface temperature of the earth has remained within the range of 10-20oC. Figure 4-1

ORIGINS OF LIFE 1 billion years of chemical change to form the first cells, followed by about 3.7 billion years of biological change. Figure 4-2

Biological Evolution This has led to the variety of species we find on the earth today. Figure 4-2

How Do We Know Which Organisms Lived in the Past? Our knowledge about past life comes from fossils, chemical analysis, cores drilled out of buried ice, and DNA analysis. Figure 4-4

EVOLUTION, NATURAL SELECTION, AND ADAPTATION Biological evolution by natural selection involves the change in a population’s genetic makeup through successive generations. genetic variability Mutations: random changes in the structure or number of DNA molecules in a cell that can be inherited by offspring.

Animation: Stabilizing Selection PLAY ANIMATION

Natural Selection and Adaptation: Leaving More Offspring With Beneficial Traits Three conditions are necessary for biological evolution: Genetic variability, traits must be heritable, trait must lead to differential reproduction. An adaptive trait is any heritable trait that enables an organism to survive through natural selection and reproduce better under prevailing environmental conditions.

Animation: Disruptive Selection PLAY ANIMATION

Animation: Moth Populations PLAY ANIMATION

Animation: Adaptive Trait PLAY ANIMATION

Coevolution: A Biological Arms Race Interacting species can engage in a back and forth genetic contest in which each gains a temporary genetic advantage over the other. This often happens between predators and prey species.

Hybridization and Gene Swapping: other Ways to Exchange Genes New species can arise through hybridization. Occurs when individuals to two distinct species crossbreed to produce an fertile offspring. Some species (mostly microorganisms) can exchange genes without sexual reproduction. Horizontal gene transfer

Limits on Adaptation through Natural Selection A population’s ability to adapt to new environmental conditions through natural selection is limited by its gene pool and how fast it can reproduce. Humans have a relatively slow generation time (decades) and output (# of young) versus some other species.

Common Myths about Evolution through Natural Selection Evolution through natural selection is about the most descendants. Organisms do not develop certain traits because they need them. There is no such thing as genetic perfection.

GEOLOGIC PROCESSES, CLIMATE CHANGE, CATASTROPHES, AND EVOLUTION The movement of solid (tectonic) plates making up the earth’s surface, volcanic eruptions, and earthquakes can wipe out existing species and help form new ones. The locations of continents and oceanic basins influence climate. The movement of continents have allowed species to move.

225 million years ago 225 million years ago 135 million years ago Figure 4.5 Geological processes and biological evolution. Over millions of years the earth’s continents have moved very slowly on several gigantic tectonic plates. This process plays a role in the extinction of species as land areas split apart and promote the rise of new species when once isolated land areas combine. Rock and fossil evidence indicates that 200–250 million years ago all of the earth’s present-day continents were locked together in a supercontinent called Pangaea (top left). About 180 million years ago, Pangaea began splitting apart as the earth’s huge plates separated and eventually resulted in today’s locations of the continents (bottom right). 65 million years ago Present Fig. 4-5, p. 88

Climate Change and Natural Selection Changes in climate throughout the earth’s history have shifted where plants and animals can live. Figure 4-6

Catastrophes and Natural Selection Asteroids and meteorites hitting the earth and upheavals of the earth from geologic processes have wiped out large numbers of species and created evolutionary opportunities by natural selection of new species.

ECOLOGICAL NICHES AND ADAPTATION Each species in an ecosystem has a specific role or way of life. Fundamental niche: the full potential range of physical, chemical, and biological conditions and resources a species could theoretically use. Realized niche: to survive and avoid competition, a species usually occupies only part of its fundamental niche.

Generalist and Specialist Species: Broad and Narrow Niches Generalist species tolerate a wide range of conditions. Specialist species can only tolerate a narrow range of conditions. Figure 4-7

SPOTLIGHT Cockroaches: Nature’s Ultimate Survivors 350 million years old 3,500 different species Ultimate generalist Can eat almost anything. Can live and breed almost anywhere. Can withstand massive radiation. Figure 4-A

Evolutionary Divergence Each species has a beak specialized to take advantage of certain types of food resource. Figure 4-9

SPECIATION, EXTINCTION, AND BIODIVERSITY Speciation: A new species can arise when member of a population become isolated for a long period of time. Genetic makeup changes, preventing them from producing fertile offspring with the original population if reunited.

Geographic Isolation …can lead to reproductive isolation, divergence of gene pools and speciation. Figure 4-10

Extinction: Lights Out Extinction occurs when the population cannot adapt to changing environmental conditions. The golden toad of Costa Rica’s Monteverde cloud forest has become extinct because of changes in climate. Figure 4-11

Species and families experiencing mass extinction Bar width represents relative number of living species Millions of years ago Era Period Extinction Current extinction crisis caused by human activities. Many species are expected to become extinct within the next 50–100 years. Quaternary Today Cenozoic Tertiary Extinction 65 Cretaceous: up to 80% of ruling reptiles (dinosaurs); many marine species including many foraminiferans and mollusks. Cretaceous Mesozoic Jurassic Extinction Triassic: 35% of animal families, including many reptiles and marine mollusks. 180 Triassic Extinction Permian: 90% of animal families, including over 95% of marine species; many trees, amphibians, most bryozoans and brachiopods, all trilobites. 250 Permian Carboniferous Extinction 345 Figure 4.12 Fossils and radioactive dating indicate that five major mass extinctions (indicated by arrows) have taken place over the past 500 million years. Mass extinctions leave many organism roles (niches) unoccupied and create new niches. Each mass extinction has been followed by periods of recovery (represented by the wedge shapes) called adaptive radiations. During these periods, which last 10 million years or longer, new species evolve to fill new or vacated niches. Many scientists say that we are now in the midst of a sixth mass extinction, caused primarily by human activities. Devonian: 30% of animal families, including agnathan and placoderm fishes and many trilobites. Devonian Paleozoic Silurian Ordovician Extinction 500 Ordovician: 50% of animal families, including many trilobites. Cambrian Fig. 4-12, p. 93

Effects of Humans on Biodiversity The scientific consensus is that human activities are decreasing the earth’s biodiversity. Figure 4-13